精英家教网 > 初中化学 > 题目详情
(本小题满分12分)
已知函数,且
(I)试用含的代数式表示
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数处取得极值,记点,证明:线段与曲线存在异于的公共点。
(I)
(Ⅱ)当时,函数的单调增区间为,单调减区间为
时,函数的单调增区间为R;
时,函数的单调增区间为,单调减区间为
(Ⅲ)证明见解析。解析:

解法一:
(I)依题意,得

(Ⅱ)由(I)得

,则
①当时,
变化时,的变化情况如下表:





+

+

单调递增
单调递减
单调递增
由此得,函数的单调增区间为,单调减区间为
②由时,,此时,恒成立,且仅在,故函数的单调区间为R
③当时,,同理可得函数的单调增区间为,单调减区间为
综上:
时,函数的单调增区间为,单调减区间为
时,函数的单调增区间为R;
时,函数的单调增区间为,单调减区间为
(Ⅲ)当时,得
,得
由(Ⅱ)得的单调增区间为,单调减区间为
所以函数处取得极值。

所以直线的方程为


易得,而的图像在内是一条连续不断的曲线,
内存在零点,这表明线段与曲线有异于的公共点
解法二:
(I)同解法一
(Ⅱ)同解法一。
(Ⅲ)当时,得,由,得
由(Ⅱ)得的单调增区间为,单调减区间为,所以函数处取得极值,

所以直线的方程为

解得

所以线段与曲线有异于的公共点
练习册系列答案
相关习题

同步练习册答案