分析 DF=EF,作EG∥AB交BC于G,就可以得出∠EGC=∠ABC,∠DBF=∠EGF,∠D=∠GEF,就可以得出△DBF≌△EGF,就可以得出结论.
解答 解:DF=EF,
如图,作EG∥AB交BC于G,
则∠CGE=∠ABC,∠GEF=∠D,∠DBF=∠EGF.
∵AB=AC,
∴∠ABC=∠C,
∴∠C=∠EGC,
∴CE=EG,
∵CE=BD,
∴BD=GE.
在△DBF和△EGF中,
$\left\{\begin{array}{l}{∠D=∠GEF}\\{BD=GE}\\{∠DBF=∠EGF}\end{array}\right.$,
∴△DBF≌△EGF(ASA),
∴DF=EF.
点评 本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定语言性质的运用,解答时证明三角形全等是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com