精英家教网 > 初中数学 > 题目详情
已知抛物线y=x²-4x+3.
(1)该抛物线的对称轴是       ,顶点坐标               
(2)将该抛物线向上平移2个单位长度,再向左平移3个单位长度得到新的二次函数图像,请写出相应的解析式,并用列表,描点,连线的方法画出新二次函数的图像;
x

 
 
 
 
 

y

 
 
 
 
 

 

(3)新图像上两点A(x1,y1),B(x2,y2),它们的横坐标满足<-2,且-1<<0,试比较y1,y2,0三者的大小关系.
(1)对称轴是直线x=2,顶点坐标(2,-1);(2)图象见解析;(3)y1>y2>0.

试题分析:(1)把二次函数解析式整理成顶点式形式,然后写出对称轴和顶点坐标即可;
(2)根据向左平移横坐标减,向上平移纵坐标加求出平移后的顶点坐标,然后利用顶点式形式写出函数解析式即可,再根据要求作出函数图象;
(3)根据函数图象,利用数形结合的思想求解即可.
试题解析:(1)∵y=x2-4x+3=(x-2)2-1,
∴该抛物线的对称轴是直线x=2,顶点坐标(2,-1);
(2)∵向上平移2个单位长度,再向左平移3个单位长度,
∴平移后的抛物线的顶点坐标为(-1,1),
∴平移后的抛物线的解析式为y=(x+1)2+1,
即y=x2+2x+2,
x

-3
-2
-1
0
1

y

5
2
1
2
5


(3)由图可知,x1<-2时,y1>2,
-1<x2<0时,1<y2<2,
∴y1>y2>0.
考点: 1.二次函数图象上点的坐标特征;2.二次函数图象与几何变换.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.

(1)求抛物线与x轴的另一个交点B的坐标;
(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.若以AB为一底边的梯形ABCD的面积为9.
求此抛物线的解析式,并指出顶点E的坐标;
(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.
①当t为   秒时,△PAD的周长最小?当t为     秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)
②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.

(1)求此抛物线的解析式和直线的解析式;
(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,以A、P、Q为顶点的三角形与△AOC相似;
(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大.若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,

(1)求出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x的增大而减小?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于点A(—2,0),交y轴于点B(0,).直过点A与y轴交于点C,与抛物线的另一个交点是D.

(1)求抛物线与直线的解析式;
(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.

(1)请你直接写出“蛋圆”抛物线部分的解析式          ,自变量的取值范围是          
(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;
(3)求经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过(0,-1),(3,2)两点.求它的解析式及顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的最小值是(     )
A.1   B.-1  C.3 D.-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O中,直径AB=4,CD=,AB⊥CD于点E,点M为线段EA上一个动点,连接CM、DM,并延长DM与弦AC交于点P,设线段CM的长为x,△PMC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是(   )


A.              B.                 C.               D.

查看答案和解析>>

同步练习册答案