精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,AD不平行BC,现给出三个条件:①∠CAB=∠DBA,②AC=BD,③AD=BC.请你从上述三个条件中选择两个条件,使得加上这两个条件后能够推出ABCD是等腰梯形,并加以证明(只需证明一种情况).

答案:
解析:

  下面只选择①②证明.

  证明:因为∠CAB=∠DBA,AC=BD,AB=BA,所以△ACB≌△BDA.

  所以AD=BC,∠ABC=∠BAD.

  作DE∥BC交AB于点E(如图),

  则∠DEA=∠CBA,

  所以∠DAE=∠DEA,AD=ED,

  所以DE=BC.

  因为DE∥BC,所以四边形DEBC是平行四边形,所以AB∥CD.

  又因为AD不平行BC,所以ABCD是等腰梯形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案