分析 (1)根据题意画出相应图形,如图所示,(分别以点A,B为圆心,AB长为半径画弧,两弧的交点即为点D,△ABD为等边三角形,△ACE同理可得),由三角形ABD与三角形ACE都为等边三角形,利用等边三角形的性质得到AD=AB,AE=AC,且∠BAD=∠CAE=60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACD与三角形AEB全等,利用全等三角形的对应边相等得到CD=BE;
(2)CE=BG,理由为:由四边形ABDE与四边形ACFG都为正方形,利用正方形的性质得到AD=AB,AE=AC,且∠BAD=∠CAE=90°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABG全等,利用全等三角形的对应边相等得到CE=BG;
(3)在CD外侧作等边△CDE,易证∠ACE=∠BCD,进而可以证明△ACE≌△BCD,可得AE=BD,在Rt△ADE中根据勾股定理可以求得DE的长,即可.
解答 解:(1)作图,如图所示:
∵△ABD和△ACE都为等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠CAB,即∠DAC=∠EAB,
在△ACD和△AEB中,$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠EAB}\\{AC=AE}\end{array}\right.$,
∴△ACD≌△AEB(SAS),
∴BE=CD;
(2)CE=BG,理由为:
证明:∵四边形ABDE与四边形ACFG都为正方形,
∴AE=AB,AC=AG,∠EAB=∠CAG=90°,
∴∠EAB+∠BAC=∠CAG+∠CAB,即∠EAC=∠BAG,
在△ACE和△ABG中,$\left\{\begin{array}{l}{AE=AB}\\{∠EAC=∠BAG}\\{AC=AG}\end{array}\right.$,
∴△ACE≌△ABG(SAS),
∴CE=BG;
(3)∵AB=BC,∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
在CD外侧作等边△CDE,则∠ADE=90°,DE=DC,∠DCE=60°,
∵∠ACB=∠DCE=60°,
∴∠ACE=∠BCD,
在△ACE和△BCD中,$\left\{\begin{array}{l}{CD=CE}\\{∠BCD=∠ACE}\\{AB=AC}\end{array}\right.$,
∴△ACE≌△BCD(SAS)
∴AE=BD,
∵在Rt△ADE中,DE2=AE2-AD2=BD2-AD2=5,
∴DE=$\sqrt{5}$,
∴CD=$\sqrt{5}$.
点评 此题是四边形综合题,主要考查了等边三角形的性质和判定,正方形的性质,全等三角形的判定和性质,勾股定理,简单的基本作图,熟练掌握全等三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位变化 | -5 | +7 | -3 | +4 | +10 | -9 | -20 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com