精英家教网 > 初中数学 > 题目详情
如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=x,BC=y.
(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.精英家教网
分析:(1)由△AED∽△BCE,得出其对应边成比例,进而可得出x与y的关系式;
(2)可过D点作DH⊥BN于H,求出BC的值,即y的值,进而可求解x的值;
(3)△BCE的周长为一定值,由于题中满足条件AD+DE=AB,且△AED∽△BCE,由于相似三角形的周长比即为其对应边的比,所以可得其周长不变.
解答:解:(1)由题中条件可得△AED∽△BCE,
AD
BE
=
AE
BC

∵AE=x,BC=y,AB=4,AD=1精英家教网
∴BE=4-x,
1
4-x
=
x
y

∴y=-x2+4x(0<x<4);

(2)∵DE⊥EC,
∴∠DEC=90°,
又∵DF=FC,
∴DC=2EF=2×2.5=5,
过D点作DH⊥BN于H,则DH=AB=4,
∴Rt△DHC中,HC=
DC2-DH2
=
52-42
=3,
∴BC=BH+HC=1+3=4,即y=4,
∴-x2+4x=4
解得:x1=x2=2,
∴AE=2;

(3)△BCE的周长不变.理由如下:C△AED=AE+DE+AD=4+x,BE=4-x,
设AD=m,则DE=4-m,
∵∠A=90°,
∴DE2=AE2+AD2即,(4-m)2=x2+m2
m=
16-x2
8

由(1)知:△AED∽△BCE,
C△ADE
C△BCE
=
AD
BE
=
16-x2
8
4-x
=
4+x
8

C△BCE=
8
4+x
C△ADE=
8
4+x
•(4+x)=8

∴△BCE的周长不变.
点评:本题主要考查了相似三角形的判定及性质以及勾股定理的简单运用,能够熟练掌握相似三角形的性质并加以运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=x,BC=y.
(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年河北省中考数学模拟试卷(三)(解析版) 题型:解答题

如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=x,BC=y.
(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年河北省中考数学模拟试卷(十四)(解析版) 题型:解答题

如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=x,BC=y.
(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年上海市虹口区中考数学一模试卷(解析版) 题型:解答题

如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE的垂线,交射线BN于点C,连接DC.设AE=x,BC=y.
(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;
(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.

查看答案和解析>>

同步练习册答案