精英家教网 > 初中数学 > 题目详情
在□ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并说明理由.
(1)证明见解析;(2)DF=CE.理由见解析.

试题分析:(1)因为AE,BF分别是∠DAB,∠ABC的角平分线,那么就有∠MAB=∠DAB,∠MBA=∠ABC,而∠DAB与∠ABC是同旁内角互补,所以,能得到∠MAB+∠MBA=90°,即得证.
(2)两条线段相等.利用平行四边形的对边平行,以及角平分线的性质,可以得到△ADE和△BCF都是等腰三角形,那么就有CF=BC=AD=DE,再利用等量减等量差相等,可证.
(1)∵在?ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.(1分)
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.
∴∠AMB=90°.
∴AE⊥BF.
(2)线段DF与CE是相等关系,即DF=CE,
∵在?ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.
∴∠DEA=∠DAE.
∴DE=AD.(6分)
同理可得,CF=BC.
又∵在?ABCD中,AD=BC,
∴DE=CF.
∴DE-EF=CF-EF.
即DF=CE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=4,AC=3,D、E分别是AB、AC上的动点,在边AC上取一点E,使A、D、E三点组成的三角形与△ABC相似.
(1)当AD=2时,求AE的长;
(2)当AD=3时,求AE的长;
(3)通过上面两题的解答,你发现了什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P为线段AB上任意一点,延长PD到E,使DE=2PD,再以PE、PC为边作□PCQE,求对角线PQ的最小值   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.
(1)如图1,当点M在BC上时,求证:BD-2DE=BM;
(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是        
(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=,且AF:FD=1:2时,求线段DG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn―1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An1AnBn1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2014的阴影三角形共有__________个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请将下图中的相似图形的序号写出来______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则=       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,O为矩形ABCD的中心,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与BC,AB相交,交点分别为M,N.如果AB=4,AD=6,OM=x,ON=y.则y与x的关系是(  )
A.B.C.y=xD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,□ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC长为          .

查看答案和解析>>

同步练习册答案