精英家教网 > 初中数学 > 题目详情

【题目】已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,设P,Q分别为AB边,CB边上的动点,它们同时分别从A,C出发,以每秒1个单位长度的速度向终点B运动,设P,Q运动的时间为t秒.

(1)求△CPQ的面积S与运动时间t之间的函数关系式,并求出S的最大值.
(2)t为何值时,△CPQ为直角三角形.
(3)①探索:△CPQ是否可能为正三角形,说明理由.
②P,Q两点同时出发,若点P的运动速度不变,试改变点Q的运动速度,使△CPQ为正三角形,求出点Q的运动速度和此时的t值.

【答案】
(1)

解:作PD⊥AC于D,PE⊥BC于E,

∵∠ACB=90°,CA=3,CB=4,

∴AB= =5,

∵AP=t,

∴AD= t,PD= t,

∴PE=DC=3﹣ t,

∴S= ×t×(3﹣ t)=﹣ t2+ t,

∵S=﹣ t2+ t=﹣ (t﹣ 2+

∴S的最大值为


(2)

解:只有当PC2+PQ2=CQ2时,△CPQ为直角三角形,

∴( t)2+(3﹣ t)2+(3﹣ t)2+(t﹣ t)2=t2

解得,t1=3,t2=15(舍去),

∴当t=3时,△CPQ为直角三角形;


(3)

①△CPQ不可能为正三角形,

理由如下:若△CPQ是正三角形,

则PC=PQ,EC=EQ,即t﹣ t= t,

解得,t=0,

∴△CPQ不可能为正三角形;

②设点Q的运动速度为a,

当CE=EQ时,即 t=at﹣ t,

解得,a=

∵∠PCQ=60°,

∴PE= PD,

解得,t=


【解析】(1)作PD⊥AC于D,PE⊥BC于E,根据勾股定理求出AB,用t表示出AD、PD,根据三角形的面积公式计算即可;(2)根据勾股定理列出算式,求出t的值;(3)①根据等边三角形的三线合一列式计算即可;②设点Q的运动速度为a,根据等边三角形的性质列式求出a,根据等边三角形的性质、正切的概念计算即可.
【考点精析】通过灵活运用等边三角形的性质和勾股定理的概念,掌握等边三角形的三个角都相等并且每个角都是60°;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2016次相遇地点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,与CD相交于点F,DHBCH,交BEG,下列结论中正确的是(  )

①△BCD为等腰三角形;②BF=AC;CE=BF;BH=CE.

A. ①② B. ①③ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】复习全等三角形的知识时老师布置了一道作业题:

如图①已知ABC中,AB=AC,PABC内任意一点AP绕点A顺时针旋转至AQ,使∠QAP=BAC,连接BQ,CP,BQ=CP.”

小亮是个爱动脑筋的同学他通过对图①的分析证明了ABQ≌△ACP,从而证得BQ=CP之后他将点P移到等腰三角形ABC原题中其他条件不变发现“BQ=CP”仍然成立请你就图②给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

与标准质量的差值

(单位:千克)

3

2

1.5

0

1

2.5

箱数

1

4

2

3

2

8

(1)20箱橘子中,最重的一箱比最轻的一箱多重多少千克?

(2)与标准重量比较,20箱橘子总计超过或不足多少千克?

(3)若橘子每千克售价2.5元,则出售这20箱橘子可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC=2,BC边上有10个不同的点P1,P2,……,P10(i = 1,2,……,10),那么 M1+M2+……+M10的值为(

A. 4 B. 14 C. 40 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=9,AB=15,动点P从点A出发,沿AC→CB→BA边运动,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位,直线l从与AC重合的位置开始,以每秒 个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.

(1)当t=秒时,△PCE是等腰直角三角形;
(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点P1落在EF上,点F的对应点为F1 , 当EF1⊥AB时,求t的值;
(3)作点P关于直线EF的对称点Q,在运动过程中,若形成的四边形PEQF为菱形,求t的值;
(4)在整个运动过程中,设△PEF的面积为S,请直接写出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,点MN把线段AB分割成AMMNBN,若以AMMNBN为边的三角形是一个直角三角形,则称点MN是线段AB的勾股分割点.

请解决下列问题:

(1)已知点MN是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;

(2)如图2,若点FMNG分别是ABADAEAC边上的中点,点DE是线段BC的勾股分割点,且EC>DE>BD,求证:点MN是线段FG的勾股分割点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰三角形ABC中,ABAC=10,BC=12,DBC边上的任意一点,过点D分别作DEABDFAC,垂足分别为EF,则DEDF______

查看答案和解析>>

同步练习册答案