精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=(
A.2π
B. π
C. π
D. π

【答案】B
【解析】解:如图,假设线段CD、AB交于点E, ∵AB是⊙O的直径,弦CD⊥AB,
∴CE=ED=2
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
∴OE=DEcot60°=2 × =2,OD=2OE=4,
∴S阴影=S扇形ODB﹣SDOE+SBEC= OE×DE+ BECE= ﹣2 +2 =
故选B.

根据垂径定理求得CE=ED=2 ,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣SDOE+SBEC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是( )
A.5cm
B.7cm
C.10cm
D.12cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:∠MON=80°,OE平分∠MON,点ABC分别是射线OMOEON上的动点(ABC不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.

(1)如图1,若ABON,则:①∠ABO的度数是      

②如图2,当∠BAD=ABD时,试求x的值(要说明理由);

(2)如图3,若ABOM,则是否存在这样的X的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题

1)一个学生有中国邮票和外国邮票共25张,中国邮票的张数比外国邮票的张数的2倍少2张,这个学生有中国邮票和外国邮票各多少张?

2)甲乙二人相距18千米,二人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可以追上乙。求二人的平均速度各是多少?

3)国家为九年义务教育期间的学生实行“两免一补”政策,下表是某地区某中学国家免费提供教科书补助的部分情况。

合计

每人免费补助金额(元)

110

90

50

——

人数(人)

80

300

免费补助金额(元)

4000

26200

请问该校七、八年级各有学生多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线

1)如图1,直接写出的数量关系为

2)如图2的角平分线所在的直线相交于点,试探究之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发.设甲与A地相距(km),乙与A地相距(km),甲离开A地的时间为x(h),与x之间的函数图象如图所示.

(1)甲的速度是 km/h;

(2)当1≤x≤5时,求关于x的函数解析式;

(3)当乙与A地相距240km时,甲与A地相距 km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,过点A(8,6)分别做x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).

(1)直接写出点B和点C的坐标:B( )C( ).

(2)当点P运动时,用含t的代数式表示线段AP的长,并写出t的取范围;

(3)点D(2,0),连结PD、AD,在(2)的条件下是否存在这样的t值,使S△APD=S四边形ABOC,若存在,请求t值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).

甲、乙两人射箭成绩统计表

第1次

第2次

第3次

第4次

第5次

甲成绩

9

4

7

4

6

乙成绩

7

5

7

a

7


(1)a= =
(2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
②请你从平均数和方差的角度分析,谁将被选中.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把部分的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

均为正整数时,若,用含mn的式子分别表示,得      

2)利用所探索的结论,找一组正整数,填空:    (      )2

3)若,且均为正整数,求的值.

查看答案和解析>>

同步练习册答案