精英家教网 > 初中数学 > 题目详情
如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O与点D,过点D的切线分别交AB、AC的延长线与点E、F.
(1)求证:AF⊥EF.
(2)小强同学通过探究发现:AF+CF=AB,请你帮忙小强同学证明这一结论.
证明:(1)连接OD,
∵EF是⊙O的切线,
∴OD⊥EF,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
CD
=
BD

∴OD⊥BC,
∴BCEF,
∵AB为直径,
∴∠ACB=90°,
即AC⊥BC,
∴AF⊥EF;

(2)连接BD并延长,交AF的延长线于点H,连接CD,
∵AB是直径,
∴∠ADB=90°,
即AD⊥BH,
∴∠ADB=∠ADH=90°,
在△ABD和△ADH中,
∠HAD=∠BAD
AD=AD
∠ADH=∠ADB

∴△ABD≌△AHD(ASA),
∴AH=AB,
∵EF是切线,
∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD,
∴∠CDF=∠HDF,
∵DF⊥AF,DF是公共边,
∴△CDF≌△HDF(ASA),
∴FH=CF,
∴AF+CF=AF+FH=AH=AB.
即AF+CF=AB,
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC交于D,连接BD,若BC=
5
-1,则AC=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,∠BAC=20°,则∠P的大小是______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为
DF
的中点.
(1)求证:AC是半圆O的切线;
(2)若AD=6,AE=6
2
,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.
(1)求证:∠DAC=∠BAC;
(2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,猜想:此时与∠DAC相等的角是哪一个?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知正方形ABCD的边长为2,点P是BC上的一点,将△DCP沿DP折叠至△DPQ,若DQ,DP恰好与如图所示的以正方形ABCD的中心O为圆心的⊙O相切,则折痕DP的长为(  )
A.
2
3
3
B.
4
3
3
C.
2
3
5
D.
4
3
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦CD⊥AB于E,弦CD、AF相交于点G,过点D作⊙O的切线交AF的延长线于M,且
AC
=
CBF

(1)在图中找出相等的线段(直接在横线上填写,所写结论至少3组,所添辅助线段除外,不需写推理过程)______;
(2)连接AD,DF(请将图形补充完整),若AO=
4
5
15
,OE=
1
5
15
,求AD:DF的值;
(3)在满足(1)、(2)的前提下,求DM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,△ABC内接于⊙O1,AB=AC,⊙O2与BC相切于点B,与AB相交于点E,与⊙O1相交于点D,直线AD交⊙O2于点F,交CB的延长线于点G.
求证:(1)∠G=∠AFE;(2)AB•EB=DE•AG.

查看答案和解析>>

同步练习册答案