分析 (1)根据等边三角形的性质求出∠EBF,并猜想∠QFC的度数;
(2)根据三角形的外角等于不相邻的两内角的和,证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF;
(3)过点F作FG⊥BE于点G,过点Q作QH⊥BC,根据△ABP≌△AEQ得到:设QE=BP=x,则QF=QE+EF=x+2.点Q到射线BC的距离y=QH=sin60°×QF,列出关系式.
解答 解:(1)∵△ABE是等边三角形,
∴∠ABE=60°,
∴∠EBF=∠ABC-∠ABE=30°,
猜想得,∠QFC=60°,
故答案为:30;60;
(2)∠QFC=60°.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ,
在△ABP和△AEQ中,
$\left\{\begin{array}{l}{AB=AE}\\{∠BAP=∠EAQ}\\{AP=AQ}\end{array}\right.$,
∴△ABP≌△AEQ (SAS)
∴∠AEQ=∠ABP=90°
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,
∴∠QFC=∠EBF+∠BEF=30°+30°=60°;
(3)在图1中,过点F作FG⊥BE于点G,点Q作QH⊥BC,垂足为H,
∵△ABE是等边三角形,
∴BE=AB=2$\sqrt{3}$.
由(1)得∠EBF=30°.
又∵∠QFC=60°
∴∠EBF=∠BEF,
∴BF=EF,
∵FG⊥BE
∴BG=$\frac{1}{2}$BE=$\sqrt{3}$,
∴BF=2,
∵Rt△ABP≌Rt△AEQ,
∴QE=BP=x,
则QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF=$\frac{\sqrt{3}}{2}$(x+2),
即y关于x的函数关系式是:y=$\frac{\sqrt{3}}{2}$x+$\sqrt{3}$.
点评 本题考查的是等边三角形的性质、全等三角形的判定和性质、锐角三角函数的概念,掌握全等三角形的判定定理和性质定理、熟记锐角三角函数的定义是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{9}{4}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com