精英家教网 > 初中数学 > 题目详情
(2013•锦州)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是(  )
分析:如果设第一次有x人捐款,那么第二次有(x+20)人捐款,根据两次人均捐款额相等,可得等量关系为:第一次人均捐款额=第二次人均捐款额,据此列出方程即可.
解答:解:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意,有
4800
x
=
5000
x+20

故选B.
点评:本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•锦州)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2=1.22,S2=1.68,S2=0.44,则应该选
参加全运会.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).
(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;
(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州模拟)如图,直线x=t(t>0)与反比例函数y=
2
x
,y=-
1
x
的图象分别交于B,C两点,A为y轴上的任意一点,则△ABC的面积为
3
2
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州模拟)如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点.与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D
(1)求抛物线的表达式;
(2)在抛物线的对称轴上找一点M,使|BM-CM|的值最大,求出点M的坐标.
(3)平面直角坐标系上有一点P(5,2),x轴上是否存在一点Q,使△PQD为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
(4)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案