精英家教网 > 初中数学 > 题目详情

【题目】海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;

(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?

【答案】(1)60;(2)9,图形见解析;(3)150.

【解析】

试题分析:(1)用演员人数除以演员所占百分比可得到共抽取了学生总数;(2)用总数减去其他的人数可得出教师职业的人数,再补全统计图;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.

试题解析:(1)12÷20%=60,答:共调查了60名学生.(2)60129624=9,答:最喜爱的教师职业人数为9人.如图所示:

(3)(名)答:该中学最喜爱律师职业的学生有150名.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2017年某企业按餐厨垃圾处理费25/ 吨、建筑垃圾处理费16/ 吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2018年元月起,收费标准上调为:餐厨垃圾处理费100/ 吨,建筑垃圾处理费30/ 吨.若该企业2018年处理的这两种垃圾数量与2017年相比没有变化,就要多支付垃圾处理费8800元.

(1)该企业2017年处理的餐厨垃圾和建筑垃圾各多少吨?

(2)该企业计划2018年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2018年该企业最少需要支付餐厨垃圾处理费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,某校组织八年级1000名学生参加汉字听写大赛.为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到分数段在70.580.5的频数是50所占百分比25%,则本次抽样调查的样本容量为_____.

【答案】200

【解析】试题分析:50÷25%=200,

所以本次抽样调查的样本容量是200.

故答案为:200.

型】填空
束】
13

【题目】已知P1x1y1),P2x2y2),P3x3y3)是反比例函数的图象上的三点,且x10x2x3,则y1y2y3的大小关系是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.
求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了开展读书月活动对学生最喜欢的图书种类进行了一次抽样调查所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书)并将调查结果制成如下两幅不完整的统计图:

根据统计图提供的信息解答下列问题:

(1)m n

(2)扇形统计图中“艺术”所对应的扇形的圆心角度数是 度;

(3)请根据以上信息补全条形统计图;

(4)根据抽样调查的结果请你估计该校1000名学生中有多少学生最喜欢科普类图书.

【答案】 (1)m=50, n=30;(2)72度 (3)补图见解析(4)300

【解析】试题分析:1)根据其他的人数和所占的百分比即可求得m的值,从而可以求得n的值;

2)根据扇形统计图中的数据可以求得艺术所对应的扇形的圆心角度数;

3)根据题意可以求得喜爱文学的人数,从而可以将条形统计图补充完整;

4)根据统计图中的数据可以估计该校600名学生中有多少学生最喜欢科普类图书.

试题解析:

解:(1m5÷10%50n%15÷5030%

故答案为:5030

2)由题意可得,

艺术所对应的扇形的圆心角度数是:360°×72°

故答案为:72

3)文学有:501015520

补全的条形统计图如图所示;

4)由题意可得,

600×180

即该校600名学生中有180名学生最喜欢科普类图书.

点睛:本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

型】解答
束】
23

【题目】端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.5元,花35元购买粽子的个数与花20元购买咸鸭蛋的个数相同.粽子与咸鸭蛋的价格各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点, 且点A的坐标为(-2,3),点B的纵坐标是-2,求:

(1)一次函数与反比例函数的解析式;

2利用图像指出,当为何值时有> ;当为何值时有

(3)利用图像指出,当>3时的取值范围。

【答案】见解析

【解析】试题分析:(1)把A点坐标代入反比例函数解析式求出m的值,把B点的纵坐标代入反比例函数解析式求出B点的横坐标,再把AB两点的坐标代入一次函数解析式求出kb的值即可;

(2)根据A、B的横坐标,结合图象即可得出答案

(3)求出x=3y2的值,然后结合图象即可得出y2的取值范围.

试题解析:

解:(1A(-23)在反比例函数y2的图象上,

m=-2×3

=-6,

即反比例函数的解析式为y2

y2=-2时,x=3,

B(3,-2),

A(-2,3),B(3,-2)代入ykxb得:

解得:

即一次函数的解析式为y=-x+1;

(2)结合图象可得y1y2时对应的图象在点A的左侧和y轴与点B之间,

x<-20<x<3;

同理y1y2时对应的图象在点Ay轴之间和点B的右侧,

-2<x<0x>3;

(3)当x=3时,y2=-2,

x>3时反比例函数对应的图象在点B的右侧部分,

对应的函数值-2<y2<0.

点睛:本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数的解析式等知识点,主要考查学生的计算能力和观察图形的能力,用了数形结合思想.

型】解答
束】
26

【题目】如图四边形ABCD是平行四边形A(10)B(41)C(44).反比例函数 (x0)的图像经过点DP是一次函数y=ax+4-4a(a0)的图像与该反比例函数图像的一个公共点.

(1)求反比例函数的表达式;

(2)一次函数y=ax+4-4a(a0)的图像恒过一定点,直接写出这个定点的坐标.

(3)对于一次函数y=ax+4-4a(a0),当y随x的增大而减小时,确定点P的横坐标的取值范围.(不必写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是(  )

A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD的对角线AC、BD交于点O,若OE=OF,DFBE.

(1)求证:△BOE≌△DOF;

(2)求证:四边形DEBF是平行四边形;

(3)若OD=OE=OF,则四边形DEBF是什么特殊的四边形,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为(  )

A. 商贩A的单价大于商贩B的单价

B. 商贩A的单价等于商贩B的单价

C. 商版A的单价小于商贩B的单价

D. 赔钱与商贩A、商贩B的单价无关

查看答案和解析>>

同步练习册答案