精英家教网 > 初中数学 > 题目详情
9.下列关于$\sqrt{8}$的说法中,错误的是(  )
A.$\sqrt{8}$是8的算术平方根B.2<$\sqrt{8}$<3
C.$\sqrt{8}$=$±2\sqrt{2}$D.$\sqrt{8}$是无理数

分析 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

解答 解:A、$\sqrt{8}$是8的算术平方根,故A正确;
B、2<$\sqrt{8}$<3,故B正确;
C、$\sqrt{8}$=2$\sqrt{2}$,故C错误;
D、$\sqrt{8}$是无理数,故D正确;
故选:C.

点评 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.代数式$\frac{x+y}{6}$,$\frac{x}{2x}$,$\frac{x-y}{a+b}$,$\frac{x}{π}$中分式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.在实数:-$\sqrt{2}$,3.14159,$\root{3}{27}$,π,1.010010001…,4.$\stackrel{•}{2}$$\stackrel{•}{1}$,$\frac{1}{3}$中,无理数有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)计算:(-1)2015+($\frac{1}{3}$)-3-(π-3.1)0
(2)计算:(-2x2y)2•3xy÷(-6x2y)
(3)先化简,再求值:[(2x+y)2+(2x+y)(y-2x)-6y]÷2y,其中x=-$\frac{1}{2}$,y=3.
(4)用整式乘法公式计算:$\frac{15{6}^{2}-15{4}^{2}}{201{6}^{2}-2015×2017}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:如图1,在矩形ABCD中,AB=5,AD=$\frac{20}{3}$,AE⊥BD,垂足为E,点F是点E关于AB的对称点,连接AF,BF.
(1)AE的长为4,BE的长为3;
(2)如图2,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′.
①在旋转过程中,当A′F′与AE垂直于点H,如图3,设BA′所在直线交AD于点M,请求出DM的长;
②在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q,是否存在这样的P、Q两点,使△DPQ为以PQ为底的等腰三角形?请直接写出DQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列一元二次方程有两个相等实数根的是(  )
A.x2+4=0B.x2-2x=0C.(x+1)2=0D.(x-3)(x+1)=0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知n是关于x的一元二次方程x2+m2x-2m=0(m为实数)的一个实数根,则n的最大值是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)问题发现
如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.
填空:
①∠CDB的度数为60°;
②线段AE,CD之间的数量关系为AE=CD.
(2)拓展探究
如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD,请判断∠CDB的度数及线段BF,AD,CD之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=2,CE⊥AE于E,∠BAE=∠BCE,若AE=1,结合(1),(2)的解题经验和结论,请求出点B到AE的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.若$\frac{1}{9}$x2-1=0,求x的值.

查看答案和解析>>

同步练习册答案