精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知四边形ABCD中,AB=
3
,BC=2,CD=5,AD=4
2
,且AB⊥BC,求四边形ABCD面积.
分析:在Rt△ABC中,已知AB,BC的长,运用勾股定理可求出AC的长,在△ACD中,已知三边长,运用勾股定理逆定理,可得:此三角形为直角三角形,故四边形ABCD的面积为Rt△ABC与Rt△ACD的面积之和.
解答:解:∵AB⊥BC,
∴∠B=90°,
∴AC=
AB2+BC2
=
(
3
)
2
+22
=
7

∵AC2+CD2=(
7
2+52=32=(4
2
2=AD2
∴△ACD为直角三角形,
∴S四边形ABCD=S△ABC+S△ACD
=
1
2
×2×
3
+
1
2
×
7
×4
2

=
3
+2
14
点评:本题关键是运用勾股定理和逆定理,求不规则图形的面积可转化为几个规则图形面积之和或差是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案