分析 由点A1、A2的坐标,结合平移的距离即可得出点An的坐标,再由直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,即可得出点An+1(4n,0)在直线y=kx+2上,依据依此函数图象上点的坐标特征,即可求出k值.
解答 解:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,
∴An(4n-4,0).
∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,
∴点An+1(4n,0)在直线y=kx+2上,
∴0=4nk+2,
解得:k=-$\frac{1}{2n}$.
故答案为:-$\frac{1}{2n}$.
点评 本题考查了一次函数图象上点的坐标特征以及坐标与图形变化中的平移,根据一次函数图象上点的坐标特征结合点An的坐标,找出0=4nk+2是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 11223344… | B. | 2.231231231231… | ||
C. | 0.1428142814281428… | D. | 0.1111111… |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com