精英家教网 > 初中数学 > 题目详情

已知是某直角三角形内角中较大的锐角,是某五边形的外角中的最大角,甲、乙、丙、丁

计算的结果依次为10°、15°、30°、35°,其中有正确的结果,则计算正确的是(   )                                                         

 A.甲             B.乙             C.丙              D.丁

 

【答案】

B

【解析】直角三角形内角中较大的锐角范围加上五边形的外角中的最大角范围的和除以6即得的范围,可知乙正确,故选B。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料后回答问题:
在平面直角坐标系中,已知x轴上的两点A(x1,0),B(x2,0)的距离记作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意两点,我们可以通过构造直角三角形来求A、B间的距离.
如图,过A、B两点分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别记作M1(x1,0),N1(0,y1)、M2(x2,0),N2(0,y2),直线AN1与BM2交于Q点.
在Rt△ABQ中,|AB|2=|AQ|2+|QB|2,∵|AQ|=|M1M2|=|x2-x1|,|BQ|=|N1N2|=|y2-y1|
∴|AB|2=|x2-x1|2+|y2-y1|2由此得任意两点A(x1,y1),B(x2,y2)之间的距离公式:|AB|=
|x2-x1|2+|y2-y1|2

如果某圆的圆心为(0,0),半径为r.设P(x,y)是圆上任一点,根据“圆上任一点到定点(圆心)的距离都等于定长(半径)”,我们不难得到|PO|=r,即
(x-0)2+(y-0)2
=r
,整理得:x2+y2=r2.我们称此式为圆心在精英家教网原点,半径为r的圆的方程.
(1)直接应用平面内两点间距离公式,求点A(1,-3),B(-2,1)之间的距离;
(2)如果圆心在点P(2,3),半径为3,求此圆的方程.
(3)方程x2+y2-12x+8y+36=0是否是圆的方程?如果是,求出圆心坐标与半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>

科目:初中数学 来源:安徽省期末题 题型:解答题

阅读下列材料后回答问题:
在平面直角坐标系中,已知x轴上的两点A(x1,0),B(x2,0)的距离记作是平面上任意两点,我们可以通过构造直角三角形来求A、B间的距离。
,过A、B两点分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别记作
直线AN1与BM2交于Q点。
在Rt△ABQ中,

由此得任意两点之间的距离公式:
如果某圆的圆心为(0,0),半径为r。设P(x,y)是圆上任一点,根据“圆上任一点到定点(圆心)的距离都等于定长(半径)”,我们不难得到|PO|=r,即:整理得:x2+y2=r2。我们称此式为圆心在原点,半径为r的圆的方程。
(1)直接应用平面内两点间距离公式,求点之间的距离;
(2)如果圆心在点P(2,3),半径为3,求此圆的方程。
(3)方程x2+y2-12x+8y+36=0是否是圆的方程?如果是,求出圆心坐标与半径。

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料后回答问题:

在平面直角坐标系中,已知x轴上的两点A(X1,0),B(X2,0)的距离记作,如果是平面上任意两点,我们可以通过构造直角三角形来求A、B间的距离。

如图,过A、B两点分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别记作,直线AN1与BM2交于Q点。

在Rt△ABQ中,,∵

由此得任意两点之间的距离公式:

如果某圆的圆心为(0,0),半径为r。设P(x,y)是圆上任一点,根据“圆上任一点到定点(圆心)的距离都等于定长(半径)”,我们不难得到,即:,    整理得:。我们称此式为圆心在原点,半径为r的圆的方程。

(1)直接应用平面内两点间距离公式,求点 之间的距离;

(2)如果圆心在点P(2,3),半径为3,求此圆的方程。

(3)方程是否是圆的方程?如果是,求出圆心坐标与半径。

查看答案和解析>>

科目:初中数学 来源:2009-2010学年安徽省亳州市蒙城县涡南片19校联考九年级(上)期末数学试卷(解析版) 题型:解答题

阅读下列材料后回答问题:
在平面直角坐标系中,已知x轴上的两点A(x1,0),B(x2,0)的距离记作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意两点,我们可以通过构造直角三角形来求A、B间的距离.
如图,过A、B两点分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别记作M1(x1,0),N1(0,y1)、M2(x2,0),N2(0,y2),直线AN1与BM2交于Q点.
在Rt△ABQ中,|AB|2=|AQ|2+|QB|2,∵|AQ|=|M1M2|=|x2-x1|,|BQ|=|N1N2|=|y2-y1|
∴|AB|2=|x2-x1|2+|y2-y1|2由此得任意两点A(x1,y1),B(x2,y2)之间的距离公式:|AB|=
如果某圆的圆心为(0,0),半径为r.设P(x,y)是圆上任一点,根据“圆上任一点到定点(圆心)的距离都等于定长(半径)”,我们不难得到|PO|=r,即,整理得:x2+y2=r2.我们称此式为圆心在原点,半径为r的圆的方程.
(1)直接应用平面内两点间距离公式,求点A(1,-3),B(-2,1)之间的距离;
(2)如果圆心在点P(2,3),半径为3,求此圆的方程.
(3)方程x2+y2-12x+8y+36=0是否是圆的方程?如果是,求出圆心坐标与半径.

查看答案和解析>>

同步练习册答案