【题目】如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PBPA.
(1)求证:PC是⊙O的切线;
(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.
【答案】(1)详见解析;(2).
【解析】
(1)连接OC,证明△PBC∽△PCA,得到∠PCB=∠PAC,根据直径得到∠ACB=90°,再利用OC=OB推导出∠PCB+∠OCB=90°即可得到结论;
(2)连接OD,根据PC2=PBPA求出AB=30,设BC=x在Rt△ABC中根据勾股定理求出x,证明△DOF∽△ACB求出,根据EF∥BC得到,由此求出EF.
(1)证明:连接OC,如图1所示:
∵PC2=PBPA,即,且∠P=∠P,
∴△PBC∽△PCA,
∴∠PCB=∠PAC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
∵OC=OB,
∴∠OBC=∠OCB,
∴∠PCB+∠OCB=90°,即OC⊥PC,
∴PC是⊙O的切线;
(2)解:连接OD,如图2所示:
∵PC=20,PB=10,PC2=PBPA,
,
∴AB=PA﹣PB=30,
∵△PBC∽△PCA,
∴,
设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,
解得:,即BC=,
∵点D是的中点,AB为⊙O的直径,
∴∠AOD=90°,
∵DE⊥AC,
∴∠AEF=90°,
∵∠ACB=90°,
∴DE∥BC,
∴∠DFO=∠ABC,
∴△DOF∽△ACB,
∴,
,即,
∵EF∥BC,
∴,
.
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC是⊙O的一条弦,D为弧BC的中点,作DE⊥AC,垂足为AC的延长线上的点E,连接DA,DB.
(1)求证:DE为⊙O的切线;
(2)试探究线段AB,BD,CE之间的数量关系,并说明理由;
(3)延长ED交AB的延长线于F,若AD=DF,DE=,求⊙O的半径;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(新知探究)新定义:平面内两定点 A, B ,所有满足 k ( k 为定值)的 P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,
(问题解决)如图,在ABC 中,CB 4 , AB 2AC ,则ABC 面积的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解我市九年级学生身体素质情况,从全市九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 ;
(2)图1中∠α的度数是 °,把图2条形统计图补充完整;
(3)全市九年级有学生6200名,如果全部参加这次体育科目测试,请估计不及格的人数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )
A.1985B.-1985C.2019D.-2019
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校1000名学生一周在校参加体育锻炼的时间,现从各年级随机抽取了部分学生,对他们一周在校参加体育锻炼的时间进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:
(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中的值为 ;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校一周在校参加体育锻炼的时间大于的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:
(1)一共有多少名学生参与了本次问卷调查;
(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;
(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,点在轴上,以为直径作,点在轴上,且在点上方,过点作的切线,为切点,如果点在第一象限,则称为点的离点.例如,图1中的为点的一个离点.
(1)已知点,为的离点.
①如图2,若,则圆心的坐标为__________,线段的长为__________;
②若,求线段的长;
(2)已知,直线.
①当时,若直线上存在的离点,则点纵坐标的最大值为__________;
②记直线在的部分为图形,如果图形上存在的离点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(感知)如图1,在平面直角坐标系中,点的坐标为,点的坐标为,将线段绕着点按逆时针方向旋转至线段,过点作轴,垂足为点,易知,得到点的坐标为.
(探究)如图2,在平面直角坐标系中,点的坐标为,点的坐标为,将线段绕着点按逆时针方向旋转至线段.
(1)求点的坐标.(用含的代数式表示)
(2)求出BC所在直线的函数表达式.
(拓展)如图3,在平面直角坐标系中,点的坐标为,点在轴上,将线段绕着点按逆时针方向旋转至线段,连结、,则的最小值为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com