解:(1)∵点B与O(0,0)关于x=3对称,
∴点B坐标为(6,0).
将点B坐标代入y=ax
2+2x得:
36a+12=0;
∴a=
.
∴抛物线解析式为
.
当x=3时,
;
∴顶点A坐标为(3,3).
(说明:可用对称轴为
,求a值,用顶点式求顶点A坐标)
(2)设直线AB解析式为y=kx+b.
∵A(3,3),B(6,0),
∴
解得
,
∴y=-x+6.
∵直线l∥AB且过点O,
∴直线l解析式为y=-x.
∵点P是l上一动点且横坐标为t,
∴点P坐标为(t,-t).
当P在第四象限时(t>0),
S=S
△AOB+S
△OBP=
×6×3+
×6×|-t|
=9+3t.
∵0<S≤18,
∴0<9+3t≤18,
∴-3<t≤3.
又t>0,
∴0<t≤3.
当P在第二象限时(t<0),
作PM⊥x轴于M,设对称轴与x轴交点为N,
则S=S
梯形ANMP+S
△ANB-S
△PMO=
,
=
=-3t+9;
∵0<S≤18,
∴0<-3t+9≤18,
∴-3≤t<3;
又t<0,
∴-3≤t<0;
∴t的取值范围是-3≤t<0或0<t≤3.
(3)存在,点Q坐标为(3,3)或(6,0)或(-3,-9),
由(2)知t的最大值为3,则P(3,-3);
过O、P作直线m、n垂直于直线l;
∵直线l的解析式为y=-x,
∴直线m的解析式为y=x;
可设直线n的解析式为y=x+h,则有:
3+h=-3,h=-6;
∴直线n:y=x-6;
联立直线m与抛物线的解析式有:
,
解得
,
;
∴Q
1(3,3);
同理可联立直线n与抛物线的解析式,求得Q
2(6,0),Q
3(-3,-9).
分析:(1)根据抛物线的对称轴方程即可确定a的值,由此可得到抛物线的解析式,通过配方可求出顶点A的坐标;
(2)根据A、B的坐标,易求得直线AB的解析式,进而可确定直线l的解析式,即可表示出P点的坐标;由于P点的位置不确定,因此本题要分成两种情况考虑:
①P点位于第四象限,此时t>0,四边形AOPB的面积可由△OAB和△OBP的面积和求得,由此可得到关于S、t的函数关系式,根据S的取值范围即可判断出t的取值范围;
②P点位于第二象限,此时t<0,可分别过A、P作x轴的垂线,设垂足为N、M;那么四边形AOPB的面积即可由梯形APMN与△ABN的面积和再减去△OPM的面积求得,由此可得到关于S、t的函数关系式,可参照①的方法求出t的取值范围;
结合上面两种情况即可得到符合条件的t的取值范围;
(3)根据(2)的结论,可求出t的最大值,由此可得到P点的坐标;若△OPQ为直角三角形且OP为直角边,那么有两种情况需要考虑:①∠QOP=90°,②∠OPQ=90°;
可分别过Q、O作直线l的垂线m、n,由于互相垂直的两直线斜率的乘积为-1,根据直线l的解析式以及Q、O的坐标,即可求出直线m、n的解析式,联立抛物线的解析式即可求出Q点的坐标.
点评:主要考查了一次函数、二次函数解析式的确定,函数图象交点及图形面积的求法等重要知识点,同时还考查了分类讨论的数学思想,难度较大.