精英家教网 > 初中数学 > 题目详情
4.“三等分角”是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被并列为古代数学的三大难题之一,而如今数学上已证实这个问题无解,数学家普斯借助函数给出一种“三等分角”的方法.
探究
如图1,已知:矩形PQRM的顶点P、R都在函数y=$\frac{1}{x}$(x>0)的图象上,试证明:点Q必在直线OM上;
应用
如图2,将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上,边OA与函数y=$\frac{1}{x}$(x>0)的图象交于点P,以P为原心,以2OP位半径作弧交图象于点R,分别过点P和R作x轴,y轴的平行线,两直线交于点M、点Q,
连接OM,则∠MOB=$\frac{1}{3}∠AOB$,请你用所学的知识证明:∠MOB=$\frac{1}{3}∠AOB$.

分析 (1)延长PQ交x轴于点H,设点P(a,$\frac{1}{a}$),R(b,$\frac{1}{b}$),则Q(a,$\frac{1}{b}$),M(b,$\frac{1}{a}$),再由tan∠QOH=tan∠MOB即可得出结论;
(2)根据PR=2OP,PR=2PS,得出OP=PS,∠PSO=∠POS.再由∠PSO=2∠PMO,∠PMO=∠MOB可得出结论.

解答 解:(1)如图1,延长PQ交x轴于点H,设点P(a,$\frac{1}{a}$),R(b,$\frac{1}{b}$),
∵四边形PQRM是矩形,
∴Q(a,$\frac{1}{b}$),M(b,$\frac{1}{a}$).
∵tan∠QOH=$\frac{QH}{OH}$=$\frac{1}{ab}$,tan∠MOB=$\frac{MB}{OB}$=$\frac{1}{ab}$,
∴∠QOH=∠MOB,即点Q在直线OM上;

(2)如图2,
∵PR=2OP,PR=2PS,
∴OP=PS,
∴∠PSO=∠POS.
∵∠PSO=2∠PMO,∠PMO=∠MOB,
∴∠MOB=$\frac{1}{3}$∠AOB.

点评 本题考查的是反比例函数综合题,熟知反比例函数图象上点的坐标特点及矩形的性质是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,直线AD与抛物线y=-x2+bx+c交于A(-1,0)和D(2,3)两点,点C、F分别为该抛物线与y轴的交点和顶点.
(1)试求b、c的值和抛物线顶点F的坐标;
(2)求△ADC的面积;
(3)已知,点Q是直线AD上方抛物线上的一个动点(点Q与A、D不重合),求△AQD的最大面积和此时Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立如图所示的平面直角坐标系.
(1)将△ABC向左平移7个单位后再向下平移3个单位,请画出两次平移后的△A1B1C1,若M为△ABC内的一点,其坐标为(a,b),直接写出两次平移后点M的对应点M1的坐标;
(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出在第三象限内的△A2B2C2,并写出点A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某中学在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如下两种不完整的统计图表:
 选项 球类运动百分比 
 A 乒乓球 35%
 B 羽毛球 x
 C 篮球 25%
 D其他  10%
结合上述统计图表,回答下列问题:
(1)本次抽查的学生共300人,x=30%,并将条形统计图补充完整;
(2)如果该校学生有2000人,请估计该校喜爱“篮球”这项球类运动的学生约有多少人?
(3)学校决定举行一次乒乓球比赛,甲,乙,丙,丁四人参加比赛,从四人中随机抽取两人打第一场比赛,请用树状图或列表法所抽到的两人恰好是甲和丁的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.
(1)当⊙B与直线AC相切时,求x的值;
(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;
(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.直线y=-2x+8和双曲线y=$\frac{k}{x}$(k≠0)交于点A(1,m),B(n,2).
(1)求m,n,k的值;
(2)在坐标轴上有一点M,使MA+MB的值最小,直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4,将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑧的直角顶点的坐标为($\frac{144}{5}$,$\frac{12}{5}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m-1)2+(n-1)2≥2;③-1≤2m-2n≤1,其中正确结论的个数是3个.

查看答案和解析>>

同步练习册答案