精英家教网 > 初中数学 > 题目详情

如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A,D重合),PE⊥BP,P为垂足,PE交DC于E.
(1)△ABP与△DPE是否相似?请说明理由.
(2)请你探索点P在运动过程中,四边形ABED是否构成矩形?如果能,求AP长;如不能,说明理由.
(3)请你探索点P在运动过程中,△BPE能否成为等腰三角形?如果能,求AP长;如不能,说明理由.

解:(1)相似.
∵直角梯形ABCD中,AB∥CD,∠A=90°,PE⊥BP,
∴∠A=∠D=∠BPE=90°,
∴∠ABP+∠APB=90°,∠APB+∠DPE=90°,
∴∠ABP=∠DPE,
∴△ABP∽△DPE.

(2)能构成矩形时,AP=1或4.理由如下:
∵∠A=∠D=90°,∠ABP+∠APB=90°,∠APB+∠DPE=90°,
∴∠ABP=∠DPE,
∴△PAB∽△EDP,
∴AP:AB=DE:DP,
∵AB=DE=2,AD=5,
∴AP2-5AP+4=0,
解得AP=1或AP=4.

(3)∵PE⊥BP,BPE只可能是等腰直角三角形,
若△BPE是等腰直角三角形,则PB=PE,
∴△ABP≌△DPE,
∴PD=AB=2,
∴AP=DE=AD-PD=3,
∴当AP=3时,△BPE是等腰三角形.
分析:(1)根据题意,不难得出∠APB和∠DEP同为∠DPE的余角,因此∠APB=∠DEP,而所求的两三角形中又都有一个直角,因此两三角形相似.
(2)当四边形ABED是矩形时,可得出AB=DE=2,AD=BE,可根据这些条件和(1)的相似三角形得出的比例关系式求出AP的长.
(3)由于△BPE是直角三角形,如果△BPE要成为等腰三角形,只有一种情况:BP=PE.可根据这个条例,联立(1)的相似三角形得出的比例关系可求出AP的长,再利用勾股定理求出.
点评:考查了相似三角形的判定,矩形的判定,等腰三角形的判定等知识点,做题时学生要注意知识点之间的灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案