精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为   
【答案】分析:首先根据等腰三角形的性质求得∠C,再根据等弦对等弧以及圆周角定理得∠D=∠C,再根据30°所对的直角边是斜边的一半得BD=6,再根据勾股定理即可求出AD的长.
解答:解:∵∠BAC=120°,AB=AC,
∴∠C=∠ABC=(180°-120°)=30°,
∴∠D=30°,
又∵BD为⊙O的直径,AB=3,
∴BD=6,
∴AD===3
点评:综合运用等腰三角形的性质、等弦对等弧、圆周角定理的推论、直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案