精英家教网 > 初中数学 > 题目详情
如图1,在正方形ABCD和正方形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC.
(1)在图1中,请你通过观察、测量,猜想线段PG与PC之间的位置关系和数量关系,
(2)将题中的“正方形ABCD和正方形BEFG”变为“菱形ABCD和菱形BEFG”,其他条件不变.
①如图2,若∠ABC=∠BEF=60°,试探究线段PG与PC之间的位置关系和数量关系;
②若∠ABC=∠BEF=2α(0°<α<90°),请你直接写出线段PG与PC之间的位置关系和数量关系(数量关系用含α的式子表示)
分析:(1)延长GP交CD于H,根据中点的定义可得DP=FP,根据两直线平行,内错角相等可得∠PDH=∠PFG,∠PHD=∠PGF,然后利用“角角边”证明△PDH和△PFG全等,根据全等三角形的可得PH=PG,DH=FG,然后求出CH=CG,再根据等腰直角三角形的性质解答;
(2)①延长GP交CD于H,与(1)同理求出PH=PG,CH=CG,然后求出△CGH是等腰三角形,然后根据菱形的邻角互补求出∠BCD=120°,再根据等腰三角形的两底角相等求出∠CGP=30°,根据等腰三角形三线合一可得PG⊥PC,再解直角三角形即可得到PC=
3
3
PG;
②根据菱形的邻角互补求出∠BCD=180°-2a,与①同理求出△CGH是等腰三角形,然后根据等腰三角形两底角相等求出∠CGP=α,根据等腰三角形三线合一的性质可得PG⊥PC,再解直角三角形即可得到PC=PGtanα.
解答:解:(1)PG⊥PC,PG=PC.
理由如下:如图1,延长GP交CD于H,
∵P是线段DF的中点,
∴DP=FP,
∵正方形ABCD和正方形BEFG的点A、B、E在同一条直线上,
∴DC∥AE∥GF,
∴∠PDH=∠PFG,∠PHD=∠PGF,
∵在△PDH和△PFG中,
∠PDH=∠PFG
∠PHD=∠PGF
DP=FP

∴△PDH≌△PFG(AAS),
∴PH=PG,DH=FG,
∵CH=CD-DH,CG=BC-BG,BC=CD,
∴CH=CG,
∴△CHG是等腰直角三角形,
∴PG⊥PC,PG=PC;

(2)①如图,延长GP交CD于H,与(1)同理可得PH=PG,CH=CG,
∴△CGH是等腰三角形,
∵∠ABC=∠BEF=60°,
∴∠BCD=120°,
∴∠CGP=
1
2
(180°-120°)=30°,
又∵PH=PG,
∴PG⊥PC,
PC=PG•tan∠CGP=PG•tan30°=
3
3
PG,
故,PG⊥PC,PC=
3
3
PG;
②∵∠ABC=∠BEF=2α,
∴∠BCD=180°-2α,
∵△CGH是等腰三角形,
∴∠CGP=
1
2
[180°-(180°-2α)]=α,
又∵PH=PG,
∴PG⊥PC,
PC=PG•tan∠CGP=PG•tanα,
故PG⊥PC,PC=PG•tanα.
点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形两底角相等,等腰三角形三线合一的性质,以及菱形的性质,熟练掌握各图形的性质并作辅助线构造出全等三角形是解题的关键,每一小题的求解思路基本相同是此类题目的最大特点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、把正方形OFGE纸板按如图①方式放置在正方形纸板ABCD上,顶点G在对角线AC,并把正方形OFGE绕顶点A沿逆时针方向旋转,旋转角为а.
(1)如图②,当а=90°时,请直接写出线段DE与BF的数量关系和位置关系;
(2)如图③,当0°<а<90°时,(1)中的结论是否发生改变?若不变,请给出证明.若发生改变,请举例说明;
(3)如图④,将图①、图③中的两个正方形都改为矩形,其他条件不变,设AB=kAD(k>0),当0°<а<90°时,(1)中的结论是否发生改变?若不变,请给出证明.若发生改变,请写出改变后的新结论,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=
 
度;
(2)如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此为部分条件,精英家教网构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图1,在正方形ABCD中,若点E是△DBC内的一点,且DE=DC,BE=CE.
(1)连接AE.说明△ABE≌△DCE的理由;
(2)求∠BDE与∠CDE度数的比值;
(3)拓展探索:若只将题中的条件“正方形ABCD”换成条件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如图2,研究∠BDE与∠CDE度数的比值是否与(2)中的结论相同,写出你的研究结果并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.
(1)求证:EF+
1
2
AC=AB;
(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1
1
2
A1C1与AB三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

课本练习拓展:
(1)如图1,在正方形ABCD中,E是BC上的一点,△ABE经过旋转后得到△ADF,
①旋转中心是点
A
A
;旋转角度最少是
90
90
度.
②爱动脑筋的小兵,在CD边上取点H使得∠HAE=45°,他发现:HE=BE+HD,他的发现正确吗?请你判断并说明理由.
(2)思维闯关:
如图2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一点,且∠DCE=45°,BE=2,则DE的长=
5
5
.(小兵运用解答(1)中所积累的经验和知识做出了该题)
(3)动手闯过:
①小明有一块如图3所示的纸片,其中∠A=∠C=90°,AB=AD.小明请小兵只剪一刀后把它拼成正方形,请你帮助小兵在图中画出剪拼得示意图.
②小兵好朋友小红现有两块同小明一样的纸片,如图4,小兵能否在每块上各剪一刀,然后拼成一个大的正方形?若能,请你画出剪法和拼法的示意图;若不能,简要说明理由.

查看答案和解析>>

同步练习册答案