精英家教网 > 初中数学 > 题目详情

【题目】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得BED在同一水平线上(如图所示).该小组在F处测得旗杆顶A的仰角为45°,平面镜E的俯角为67°,测得米,在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时).

求:(1)平面镜E到标杆底部D的距离.

2)旗杆AB的高度.

(结果保留整数,参考数据:

【答案】11米;(26

【解析】

1)作FGABG,在Rt△EDF中,根据∠FED的正切函数求解即可;

2)设ABx米,根据正切的定义求出FGBE,根据图形列方程计算,得到答案.

解:(1)作FG⊥ABG

∵FG∥BD

∴∠FED=∠GFE=67°

Rt△EDF中,tan∠FED=

米,

2)设ABx米,由题意得,四边形FDBG为矩形,

Rt△AFG中,∠AFG=45°

∴FG=AG=x-2.4

Rt△AEB中,tan∠AEB=

由题意得,

解得,x≈6

答:旗杆AB的高度约为6米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,过原点O及点A(0,4)、C(12,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒4个单位长度的速度沿x轴正方向移动.设移动时间为t秒.

(1)当点P移动到点D时,求出此时t的值.

(2)当t为何值时,△PQB为直角三角形.

(3)已知过O、P、Q三点的抛物线解析式为y=﹣.问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市倡导垃圾分类投放,将日常垃圾分成四类,分别投放四种不同颜色的垃圾桶中,在垃圾分类模拟活动中,某同学把两个不同类的垃圾随意放入两个不同颜色的垃圾筒中,则这个同学正确分类投放垃圾的概率是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级.请根据两幅统计图中的信息回答下列问题:

1)本次抽样调查共抽取了多少名学生?

2)求测试结果为C等级的学生数,并补全条形图;

3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?

4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

阅读理解:数学兴趣小组在探究如何求的值,经过思考、讨论、交流,得到以下思路:

如图1,作,使,延长至点,使,连接.

,则..

请解决下列问题:

1)类比求解:求出的值;

2)问题解决:如图2,某住宅楼的后面有一建筑物,当光线与地面的夹角是时,住宅在建筑物的墙上留下高的影子;而当光线与地面的夹角是时,住宅楼顶在地面上的影子与墙角的距离(在一条直线上).求住宅楼的高度(结果保留根号);

3)探究发现:如图3,小明用硬纸片做了两个直角三角形,在中,;在中,.他将的斜边的斜边重合在一起,并将沿方向移动.在移动过程中,两点始终在边上(移动开始时点与点重合).探究在移动过程中,是否存在某个位置,使得?如果存在,直接写出的长度;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】植树节期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.

(1)用树状图或列表法求出小王去的概率;

(2)小李说:这种规则不公平,你认同他的说法吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了了解本校学生喜爱的球类运动,在本校范围内随机抽查了部分学生,将收集的数据统计整理,绘制成如下两幅不完整的统计图.

请你根据图中提供的信息解答下列问题:

1)本次一共调查了________名学生;

2)补全条形统计图;

3足球在扇形统计图中所占圆心角的度数为________

4)若已知该校有1000名学生,请你根据调查的结果估计爱好足球排球的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,EF是四边形ABCD的对角线AC上的两点,AF=CEDF=BEDFBE

求证:(1)AFD≌△CEB.(2)四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数的图象经过该二次函数图象上点及点B.

1)求B点坐标与二次函数的解析式;

2)根据图象,写出满足x的取值范围.

3)求线段的长度.

查看答案和解析>>

同步练习册答案