精英家教网 > 初中数学 > 题目详情
24、如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.
分析:(1)由AD为△ABC的角平分线,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出结论;(2)由已知推出∠EAD=30°,得到AD=2DE,在△DEG中,由∠DEG=30°推出DE=2DG,即可推出结论.
解答:(1)证明:∵AD为△ABC的角平分线,
DE⊥AB,DF⊥AC,
∴DE=DF,∠AED=∠AFD=90°,
∴∠DEF=∠DFE,
∴∠AEF=∠AFE,
∴AE=AF
∴点A、D都在EF的垂直平分线上,
∴AD垂直平分EF.

(2)答:AG=3DG.
理由:∵∠BAC=60°,AD平分∠BAC,
∴∠EAD=30°,
∴AD=2DE,∠EDA=60°,
∵AD⊥EF,∴∠EGD=90°,
∴∠DEG=30°
∴DE=2DG,
∴AD=4DG,
∴AG=3DG.
点评:本题主要考查了角平分线的性质,线段垂直平分线的性质,含30°角的直角三角形的性质等知识点,解此题的关键是(1)证AE=AF和DE=DF;(2)证AD=2DE和DE=2DG.题目比较典型,综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在点C′的位置,BC=4,求BC′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,BE为△ABD的中线.
(1)在△BED中作BD边上的高,垂足为F;
(2)若△ABC的面积为20,BD=5.
①△ABD的面积为
 

②求△BDE中BD边上的高EF的长;
(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度数;
(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作图:在△BED中作BD边上的高,垂足为F;
(3)若△ABC的面积为60,BD=6,则△BDE中BD边上的高为多少?(请写出解题的必要过程)
(4)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代数式表示)

查看答案和解析>>

同步练习册答案