精英家教网 > 初中数学 > 题目详情

如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有

[  ]

A.1个

B.2个

C.3个

D.4个

答案:C
解析:

  分析:根据题给条件,证不出①CM=DM;△BMN是由△BMC翻折得到的,故BN=BC,又点F为BC的中点,可知:sin∠BNF=,求出∠BNF=30°,继而可求出②∠ABN=30°;在Rt△BCM中,∠CBM=30°,继而可知BC=CM,可以证出③AB2=3CM2;求出∠NPM=∠NMP=60°,继而可证出④△PMN是等边三角形.

  解答:解:∵△BMN是由△BMC翻折得到的,

  ∴BN=BC,又点F为BC的中点,

  在Rt△BNF中,sin∠BNF=

  ∴∠BNF=30°,∠FBN=60°,

  ∴∠ABN=90°-∠FBN=30°,故②正确;

  在Rt△BCM中,∠CBM=∠FBN=30°,

  ∴tan∠CBM=tan30°=

  ∴BC=CM,AB2=3CM2故③正确;

  ∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,

  ∴△PMN是等边三角形,故④正确;

  由题给条件,证不出CM=DM,故①错误.

  故正确的有②③④,共3个.

  点评:本题考查翻折变换的知识,有一定难度,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.


提示:

翻折变换(折叠问题);正方形的性质.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点E,G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点G,E,连接GF.
(1)求∠AGD的度数;
(2)证明四边形AEFG是菱形;
(3)证明BE=2OG.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆模拟)如图,在正方形纸片ABCD中,E为BC的中点.将纸片折叠,使点A与点E重合,点D落在点D′处,MN为折痕.若梯形ADMN的面积为S1,梯形BCMN的面积为S2,则
S1
S2
的值为
3
5
3
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,折痕DE分别交AB、AC于点E、G,连接GF.下列结论:
①∠AGD=112.5°;②tan∠AED=2;③△AGD的面积=△OGD的面积;④AE=GF;⑤BE=2OG.
其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案