精英家教网 > 初中数学 > 题目详情
9.先化简,再求值:(2x-1)2-(3x+1)(3x-1)+5x(x-1),其中x=$\frac{1}{2}$.

分析 原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.

解答 解:原式=4x2-4x+1-9x2+1+5x2-5x=2-9x,
当x=$\frac{1}{2}$时,原式=-$\frac{5}{2}$.

点评 此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.意大利著名数学家斐波那契在兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13…其中从第三个数起,每一个数都等于它前面两上数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如图1),再分别依次从左到右取2个、3个、4个、5个正方形拼成如下矩形并记为①、②、③、④.相应矩形的周长如下表所示:
序号
周长6101626

若按此规律继续作矩形,则序号为⑧的矩形周长(  )
A.288B.178C.128D.110

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读理解:
如图1,若点A,B在直线l同侧,在直线l上找一点P,使PA+PB的值最小
做法如下:作点B关于直线l的对称点B′,连接AB′,AB′与直线l的交点P就是所求的点.
实践运用:
如图2,在平面直角坐标系中,已知两点A(-4,3),B(11,5).
(1)按前述做法,在x轴上找一点C,使CA+CB的值最小;
(2)(1)中点C的坐标为($\frac{13}{8}$,0)
拓展延伸:当x为何值时,$\sqrt{{x}^{2}+4}$+$\sqrt{(12-x)^{2}+9}$的值最小?并求出最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知点A是一次函数y=x与反比例函数y=$\frac{k}{x}$的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,若△OAB的面积为2$\sqrt{2}$,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如果一个正整数能表示为两个正整数的平方差,那么这个正整数称为“智慧数”,按你的理解,下列4个数中不是“智慧数”的是(  )
A.2002B.2003C.2004D.2005

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点,则关于四边形EGFH判断错误的是(  )
A.可能是正方形B.一定是平行四边形
C.可能是菱形D.可能是梯形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)计算:($\frac{1}{2}$)-1-($\sqrt{3}$)3+$\frac{6}{\sqrt{3}-1}$
(2)化简:(a+1)(a-1)-a(a-2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知实数a,b满足a2-3a+1=0,b2-3b+1=0,则关于一元二次方程x2-3x+1=0的根的说法中正确的是(  )
A.x=a,x=b都不是该方程的解
B.x=a是该方程的解,x=b不是该方程的解
C.x=b是该方程的解,x=a不是该方程的解
D.x=a,x=b都是该方程的解

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.

查看答案和解析>>

同步练习册答案