精英家教网 > 初中数学 > 题目详情
17.已知一元二次方程x2-2x+m=0.
(1)当一个根x=3时,求m的值和方程的另一个根;
(2)若该方程一定有实数根,求m的取值范围.

分析 (1)将x=3代入方程求出m的值,再利用根与系数的关系即可求出另一根;
(2)根据方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.

解答 解:(1)将x=3代入方程得:9-6+m=0,即m=-3,
∴方程为x2-2x-3=0,设另一根为a,
∴3+a=2,即a=-1,
则m的值为-3,方程另一根为-1.
(2)∵该方程一定有实数根,
∴△=4-4m≥0,
解得:m≤1.
故m的取值范围是m≤1.

点评 此题考查了根与系数的关系,以及根的判别式,熟练掌握根与系数的关键是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、+5、+4、-8、+6、-3、-6、-4、+10.
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.关于x的一元二次方程(n+1)x|n|+1+(n-2)x+3n=0中,则n是1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.关于x的方程x2+2$\sqrt{k}x$-1=0有两个不相等的实数根,k的取值范围k≥0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,平面直角坐标系中,一次函数y=2x+6的图象与x轴交于点A,与y轴交于点B,点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.
(1)求点C的坐标及线段AB的长;
(2)已知点P是直线CD上一点.
请从A、B两个题目中任选一题作答.
A.①若△POC的面积为4,求点P的坐标;
②若△POC上直角三角形,请直接写出所有满足条件的点P的坐标.
B.①若△PAB的面积为6,求点P的坐标;
②若△PAB是等腰三角形,请直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程:
(1)x2-2x-3=0;                              
(2)$\frac{2x}{x-2}$=1-$\frac{1}{2-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.方程(x-2)(x+2)=2x2+2x化为一般形式为x2+2x+4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.写出一个一元二次方程,使它的一个根为1,另一个根为$-\sqrt{2}$,这个方程的一般式是x2+($\sqrt{2}$-1)x-$\sqrt{2}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程组:$\left\{\begin{array}{l}x-2y+z=0\\ 2x+y-z=1\\ 3x+2y-z=4.\end{array}\right.$.

查看答案和解析>>

同步练习册答案