精英家教网 > 初中数学 > 题目详情
(1)阅读下列材料并填空.
例:解方程|x+2|+|x+3|=5
解:①当x<-3时,x+2<0,x+3<0,
所以|x+2|=-x-2,|x+3|=-x-3
所以原方程可化为
(1)
(1)
=5
解得 x=
(2)
(2)

②当-3≤x<-2时,x+2<0,x+3≥0,
所以|x+2|=-x-2,|x+3|=x+3
所以原方程可化为-x-2+x+3=5
1=5
所以此时原方程无解
③当x≥-2时,x+2≥0,x+3>0,
所以|x+2|=
(3)
(3)
,|x+3|=
(4)
(4)

所以原方程可化为
(5)
(5)
=5
解得 x=
(6)
(6)

(2)用上面的解题方法解方程:
|x+1|-|x-2|=x-6.
分析:(1)由条件给定的却只范围确定绝对值中的数的正负性就可以去掉绝对值符号,从而根据解一元一次方程的方法求解.
(2)要解答本题的关键是去掉绝对值符号,就可以采用分段函数的方法,令x+1=0或x-2=0,求出x的值,再根据x的取值范围就可以去掉绝对值符号,从而求出其结果.
解答:解:(1)①当x<-3时,x+2<0,x+3<0,
所以|x+2|=-x-2,|x+3|=-x-3
所以原方程可化为:-x-2-x-3=5
解得:x=-5
②当-3≤x<-2时,x+2<0,x+3≥0,
所以|x+2|=-x-2,|x+3|=x+3
所以原方程可化为-x-2+x+3=5
1=5
所以此时原方程无解
③当x≥-2时,x+2≥0,x+3>0,
所以|x+2|=x+2,|x+3|=x+3
所以原方程可化为x+2+x+3=5
解得 x=0
故答案为:-x-2-x-3,-5,x+2,x+3,x+2+x+3,0

(2)令x+1=0,x-2=0时,
∴x=-1或x=2.
当x<-1时,
∴x+1<0,x-2<0,
∴|x+1|=-x-1,|x-2|=-x+2,
∴-x-1-(-x+2)=x-6
∴x=3(不符合题意,所以无解)
当-1≤x<2时,
∴|x+1|=x+1,|x-2|=-x+2,
∴x+1+x-2=x-6
∴x=-5(不符合题意,所以无解)
当x≥2时,
∴|x+1|=x+1,|x-2|=x-2,
∴x+1-x+2=x-6
∴x=9.
综上所述,x的解为:x=9.
点评:本题考查了含绝对值符号的一元一次方程的解法,解题中分类思想的运用,去绝对值的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
点的个数 可作出直线条数
2 1=S2=
2×1
2
3 3=S3=
3×2
2
4 6=S4=
4×3
2
5 10=S5=
5×4
2
n Sn=
n(n-1)
2
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=
n(n-1)
2
④结论:Sn=
n(n-1)
2
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出
 
个三角形;
当仅有4个点时,可作出
 
个三角形;
当仅有5个点时,可作出
 
个三角形;

(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
点的个数 可连成三角形个数
3
4
5
n
(3)推理:
(4)结论:

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2-2ab或a2+b2=(a-b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.
解:a2+b2=(a+b)2-2ab=52-2×3=19.
问题:(1)已知a+
1
a
=6,则a2+
1
a2
=
 

(2)已知a-b=2,ab=3,求a4+b4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并解决有关问题:
我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=O,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值).在实数范围内,零点值x=-1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:
(1)x<-1;(2)-1≤x<2;(3)x≥2.从而化简代数式|x+1|+|x-2|可分以下3种情况:
(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;
(2)当-1≤x<2时,原式=x+1-(x-2)=3;
(3)当x≥2时,原式=x+1+x-2=2x-1.
综上讨论,原式=
-2x+1(x<-1)
3(-1≤x<2)
2x-1(x≥2)

通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|x-4|的零点值;
(2)化简代数式|x+2|+|x-4|.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并填空:
(1)探究:平面上有n个点(n≥2)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?
我们知道,两点确定一条直线.平面上有2个点时,可以画
2×1
2
=1
条直线,平面内有3个点时,一共可以画
3×2
2
=3
条直线,平面上有4个点时,一共可以画
4×3
2
=6
条直线,平面内有5个点时,一共可以画
 
条直线,…平面内有n个点时,一共可以画
 
条直线.
(2)迁移:某足球比赛中有n个球队(n≥2)进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?有2个球队时,要进行
2×1
2
=1
场比赛,有3个球队时,要进行
3×2
2
=3
场比赛,有4个球队时,要进行
 
场比赛,…那么有20个球队时,要进行
 
场比赛.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并解决有关问题:我们知道:|x|=
-x(当x<0时)
0(当x=0时)
x(当x>0时)
,现在我们可以用这一结论来解含有绝对值的方程.例如,解方程|x+1|+|2x-3|=8时,可令x+1=0和2x-3=0,分别求得x=-1和
3
2
,(称-1和
3
2
分别为|x+1|和|2x-3|的零点值),在实数范围内,零点值x=-1和可将全体实数分成不重复且不遗漏的如下3种情况:①x<-1②-1≤x<
3
2
x≥
3
2
,从而解方程|x+1|+|2x-3|=8可分以下三种情况:
①当x<-1时,原方程可化为-(x+1)-(2x-3)=8,解得x=-2.
②当-1≤x<
3
2
时,原方程可化为(x+1)-(2x-3)=8,解得x=-4,但不符合-1≤x<
3
2
,故舍去.
③当x≥
3
2
时,原方程可化为(x+1)+(2x-3)=8,解得x=
10
3

综上所述,方程|x+1|+|2x-3|=8的解为,x=-2和x=
10
3

通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|3x-1|的零点值.
(2)解方程|x+2|+|3x-1|=9.

查看答案和解析>>

同步练习册答案