精英家教网 > 初中数学 > 题目详情
如图,当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A,B(A在B的右边).
(1)求抛物线的解析式.
(2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由.
(3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由.
(1)由题意可设抛物线的关系式为
y=a(x-2)2-1
因为点C(0,3)在抛物线上
所以3=a(0-2)2-1,即a=1
所以,抛物线的关系式为y=(x-2)2-1=x2-4x+3;

(2)令y=0,即x2-4x+3=0,
得点A(3,0),B(1,0),线段AC的中点为D(
3
2
3
2

直线AC的函数关系式为y=-x+3
因为△OAC是等腰直角三角形,
所以,要使△DEF与△AOC相似,△DEF也必须是等腰直角三角形.
由于EFOC,因此∠DEF=45°,
所以,在△DEF中只可能以点D、F为直角顶点.
当F为直角顶点时,DF⊥EF,此时△DEF△ACO,DF所在直线为y=
3
2

由x2-4x+3=
3
2

解得x=
4-
10
2
,x=
4+
10
2
>3
(舍去)
x=
4-
10
2
代入y=-x+3,
得点E(
4-
10
2
2+
10
2
)

当D为直角顶点时,DF⊥AC,此时△DEF△OAC,由于点D为线段AC的中点,
因此,DF所在直线过原点O,其关系式为y=x.
解x2-4x+3=x,得x=
5-
13
2
x=
5+
13
2
>3
(舍去)
x=
5-
13
2
代入y=-x+3,
得点E(
5-
13
2
1+
13
2
).
则E的坐标是:(
4-
10
2
2+
10
2
)或(
5-
13
2
1+
13
2
).

(3)点P的坐标为:(2,
3+
17
2
),(2,
3-
17
2
),(2,
1
2
),(2,
14
2
),(2,-
14
2
)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图,在平面直角坐标系中,以BC为直径的⊙M交x轴正半轴于点A、B,交y轴正半轴于点E、F,过点C作CD垂直y轴,垂足为点D,连接AM并延长交⊙M于点P,连接PE.
(1)求证:∠FAO=∠EAM;
(2)若二次函数y=-x2+px+q的图象经过点B、C、E,且以C为顶点,当点B的横坐标等于2时,四边形OECB的面积是
11
4
,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO=
1
2
,CO=BO,AB=3,求这条抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-(m-2)x+m的图象经过(-1,15),
(1)求m的值;
(2)设此二次函数的图象与x轴的交点为A、B,图象上的点C使△ABC的面积等于1,求C点的坐标;
(3)当△ABC的面积大于3时,求点C横坐标的取值范围?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,点P由C点出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,已知AC=4cm,BC=12cm,
(1)若记Q点的移动时间为t,试用含有t的代数式表示Rt△PCQ与四边形PQBA的面积;
(2)当P、Q处在什么位置时,四边形PQBA的面积最小,并求最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y1=2x2+
1
4
的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+
1
4
和直线y2=x于点A,点B.
(1)直接写出A,B两点的坐标(用含n的代数式表示);
(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;
(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+
1
4
,求a,b,c的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的半径为2,C1是函数的y=
1
2
x2
的图象,C2是函数的y=-
1
2
x2
的图象,C3是函数的y=x的图象,则阴影部分的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为1,当点E在边BC上运动时(不与正方形的顶点重合),连接AE,过点E作EF⊥AE交CD于点F.设BE=x,CF=y,求下列问题:
(1)证明△ABE△ECF;
(2)求出y关于x的函数关系式;
(3)试求当x取何值时?y有最大或最小值,是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,
(1)AC=______;
(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=______.
(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?
(4)总面积S取最大值或最小值时,点C在AB的什么位置?

查看答案和解析>>

同步练习册答案