精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,ABCD,∠1=2,∠3=4

1)求证:ADBE

2)若∠B=3=22,求∠D的度数.

【答案】(1)证明见解析;(2)72°.

【解析】

根据平行线的性质推出∠1=∠ACD,求出∠2=∠ACD,根据∠2+∠CAF=∠ACD+∠CAF推出∠DAC=∠4,求出∠DAC=∠3,根据平行线的判定得出即可.根据平行线性质可求得∠D=∠DCE.

(1)证明:∵AB∥CD,

∴∠1=∠ACD,

∵∠BCD=∠4+∠E,

∵∠3=∠4,

∴∠1=∠E,

∵∠1=∠2,

∴∠2=∠E,

∴AD∥BE;

(2)解:∵∠B=∠3=2∠2,∠1=∠2,

∴∠B=∠3=2∠1,

∵∠B+∠3+∠1=180°,

2∠1+2∠1+∠1=180°,解得∠1=36°,

∴∠B=2∠1=72°,

∵AB∥CD,

∴∠DCE=∠B=72°,

∵AD∥BE,

∴∠D=∠DCE=72°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】平面内有三点A(2,2),B(5,2),C(5,

(1)请确定一个点D,使四边形ABCD为长方形,写出点D的坐.

(2)求这个四边形的面积(精确到0.01).

(3)将这个四边形向右平移2个单位,再向下平移个单位,求平移后四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4, ),B(﹣1,2)是一次函数y=kx+b与反比例函数 (m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AB=AC,过边AB上一点NAB的垂线交BC于点M.

(1)如图1,若∠A=40°,求∠NMB的度数

(2)如图2,若∠A=70°,求∠NMB的度数

(3)你可以再分别给出几个∠A(∠A为锐角)的度数,你发现规律了吗?写出当∠A为锐角时,你猜想出的规律,并进行证明.

(4)∠A为直角、钝角时,是否还有(3)中的结论(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,交AC于点D,AF⊥BD,垂足为点E,交BC于点F.求证:AD=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业15月份利润的变化情况图所示,以下说法与图中反映的信息相符的是( )

A. 12月份利润的增长快于23月份分利润的增长

B. 14月份利润的极差与15月份利润的极差不同

C. 15月份利润的的众数是130万元

D. 15月份利润的中位数为120万元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.
(1)求证:AC平分∠DAB;
(2)探究线段PC,PF之间的大小关系,并加以证明;
(3)若tan∠CEB= ,BE=5 ,求AC、BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读材料)

,即2<<3,

∴1<<2.

﹣1的整数部分为1.

﹣1的小数部分为﹣2

(解决问题)的小数部分是多少;

我们还可以用以下方法求一个无理数的近似值.

阅读理解:求的近似值.

解:设=10+x,其中0<x<1,则107=(10+x)2,即107=100+20x+x2

因为0<x<1,所以0<x2<1,所以107≈100+20x,解之得x≈0.35,即的近似值为10.35.

理解应用:利用上面的方法求的近似值(结果精确到0.01).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABBCAC三边的长分别为 ,求这个三角形的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC的高,而借用网格就能计算出它的面积.

1ABC的面积为      

2)若DEF的三边DEEFDF长分别为 ,请在图2的正方形网格中画出相应的DEF,并求出DEF的面积为      

3)在ABC中,AB=2AC=4BC=2,以AB为边向ABC外作ABDDCAB异侧),使ABD为等腰直角三角形,则线段CD的长为      

查看答案和解析>>

同步练习册答案