精英家教网 > 初中数学 > 题目详情
19.计算:$\sqrt{18}$+$\sqrt{\frac{9}{2}}$-${(π-\sqrt{2})}^{0}$-|1-$\sqrt{2}$|+${(\frac{1}{2})}^{-1}$.

分析 本题涉及零指数幂、绝对值、负整数指数幂、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.

解答 原式=3$\sqrt{2}$+$\frac{3\sqrt{2}}{2}$-1-$\sqrt{2}$+1+2
=$\frac{7}{2}\sqrt{2}$+2.

点评 本题考查实数的综合运算能力,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.某商品经过连续两次降价,其价格降为原来的81%,则平均每次降价的百分率为10%.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.写字时一项主要基本功,也是素质教育的重要部分,为了了解我校学生的书写情况,随机对部分学生进行测试,测试结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:

(1)扇形统计图中,“合格”的百分比为40%;
(2)本次抽测不合格等级学生有16人;
(3)随机抽取了5名等级为“优秀”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,求刚好抽到同性别学生的概率;
(4)若该校共有2000名学生,估计该校书写“不合格”等级学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,小明同学在将一张矩形纸片ABCD的四个角向内折起时,发现恰好能拼成一个无缝隙无重叠的四边形EFGH.于是他测量出EH=12cm,EF=16cm,根据这两个数据他很快求出了边AD的长,则边AD的长是(  )
A.12cmB.16cmC.20cmD.28cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.某市青少年课外活动中心组织周末手工制作活动,参加活动的20名儿童完成手工作品的情况如下表:
作品/件5678
人数4763
则这些儿童完成的手工作品件数的中位数是6件.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△OAB中,OA=OB,以点O为圆心的⊙O经过AB的中点C,直线AO与⊙O相交于点E、D,OB交⊙O于点F,P是$\widehat{DF}$的中点,连接CE、CF、BP.
(1)求证:AB是⊙O的切线.
(2)若OA=4,则
①当$\widehat{DP}$长为$\frac{π}{3}$时,四边形OECF是菱形;
②当$\widehat{DP}$长为$\frac{\sqrt{2}π}{2}$时,四边形OCBP是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.小李与小王是社区图书馆整理图书的志愿者,他们在清点图书时,小王平均每分钟比小李多清点5本,小李清点200本图书所用的时间与小王清点300本图书所用的时间相同.
(1)求小王平均每分钟清点图书的本数;
(2)周末,该图书馆要求他们两人同时清点完3600本图书,用时不超过3小时.但小王有事需提前离开,在两人清点图书的速度不变的情况下,小王至少清点多少本图书才能离开?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.四川某特产专卖店销售核桃,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折销售?
(3)若该专卖店想获得最大利润W,核桃的单价应定为多少元?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:$\sqrt{7}$÷$\sqrt{3}$×2$\sqrt{3}$÷2$\sqrt{7}$.

查看答案和解析>>

同步练习册答案