分析 先延长DA至点G使AG=CF,连接BG,根据ASA得出△ABG≌△CBF,再根据全等三角形的判断与性质以及角平分线的性质得出∠ABG=∠EBF,最后根据AB∥CD,得出BE=GE,利用勾股定理求出AE的长即可得出答案.
解答 解:延长DA至点G使AG=CF,连接BG,
在△ABG和△CBF中,
∵$\left\{\begin{array}{l}{CF=AG}\\{∠C=∠BAG}\\{CB=AB}\end{array}\right.$,
∴△ABG≌△CBF,
∴∠BFC=∠BGA,∠CBF=∠ABG,
∵BF平分∠CBE交CD于F,
∴∠CBF=∠EBF,
∴∠ABG=∠EBF,
∵AB∥CD,
∴∠ABF=∠BFC,
∴∠EBG=∠BFC,
∴∠EBG=∠BGA,
∴BE=GE,
∴BE=CF+AE,
设AE=x,则BE=x+2,
∴AE2+AB2=BE2,
∴x2+16=(x+2)2,
∴x=3,
即DE=4-3=1,
故答案为1.
点评 此题考查了正方形的性质和全等三角形的性质,用到的知识点是全等三角形的判断与性质,角平分线的性质,正方形的性质,解题的关键是作出辅助线,证出△ABG≌△CBF.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com