精英家教网 > 初中数学 > 题目详情
15.如图,AB是⊙O的弦,C是⊙O上的点,已知∠ABO=40°,则∠ACB的大小为(  )
A.40°B.30°C.45°D.50°

分析 首先根据等腰三角形的性质及三角形内角和定理,求出∠AOB的度数,再利用圆周角与圆心角的关系,求出∠ACB的度数.

解答 解:△AOB中,OA=OB,∠ABO=40°;
∴∠AOB=180°-2∠ABO=100°;
∴∠ACB=$\frac{1}{2}$∠AOB=$\frac{1}{2}$×100°=50°.
故选:D.

点评 本题主要考查了圆周角定理,等腰三角形的性质以及三角形内角和定理.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.若多项式x2+ax+b因式分解的结果为a(x-2)(x+3),求a、b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.在直角坐标系中,如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为?(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,AB=AC,点D、E、F为三边延长线上的点,且DE∥AC,连接EF交BD于点G,∠BEF+2∠B=180°.
(1)当BD=EF时,请找出图中与BE相等的线段,并说明理由.
(2)若BD=kEF,AB=a,cosB=$\frac{1}{6}$,求线段BE的长.(用含有k,a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如图:
(1)补全条形统计图;
(2)求扇形统计图扇形D的圆心角的度数;
(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,数轴上A,B两点表示的数分别为-1,-$\sqrt{2}$,点B关于点A的对称点为点C,则点C所表示的数是(  )
A.1-$\sqrt{2}$B.$\sqrt{2}$-1C.2-$\sqrt{2}$D.$\sqrt{2}$-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.用适当的方法解下列方程.
(1)x2-6x-7=0
(2)x2+2x-5=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)-33+23+(-24)-(-7)
(2)($\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{6}$)×(-12)
(3)(-1)2016+(1-0.5)×$\frac{1}{3}$×[2-(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF,下面四个结论:①$\frac{FG}{FB}$=$\frac{1}{2}$;②点F是GE的中点;③AF=$\frac{\sqrt{2}}{3}$AB;④S△ABC=6S△BDF.其中正确结论的序号是①③④.

查看答案和解析>>

同步练习册答案