【题目】如图1,在ABEF中,AB=2,AF<AB,现将线段EF在直线EF上移动,在移动过程中,设线段EF的对应线段为CD,连接AD、BC.
(1)在上述移动过程中,对于四边形的说法不正确的是 B
A.面积保持不变 B.只有一个时刻为菱形
C.只有一个时刻为矩形 D.周长改变
(2)在上述移动过程中,如图2,若将△ABD沿着BD折叠得到△A′BD(点A′与点C不重合),A′B交CD于点O.
①试问A′C与BD平行吗?请说明理由;
②若以A′、D、B、C为顶点的四边形是矩形,且对角线的夹角为60°,求AD的长.
【答案】(1)、B;(2)、①、理由见解析;②、1或
【解析】
试题分析:(1)、根据平移的性质进行判断即可;(2)、①根据对折的性质得出对应边和角相等,再根据平行线的判定解答即可; ②根据矩形的性质和等边三角形的性质进行分析解答.
试题解析:(1)、因为平移,AB保持不变,且AB与CD间的距离不变,所以四边形ABCD的面积不变,故A正确;当AD⊥CD时,四边形ABCD可以是矩形,故C正确;因为AD的长度有变化,所以四边形ABCD的周长改变,故D正确;
(2)、①、A'C∥BD.理由如下:
如图2,由ABEF可得,AB=CD,AB∥CD,又根据对折可知AB=A'B,∠3=∠2,∴A'B=CD,∠1=∠3,
∴OD=OB.∴OA'=OC, ∴∠4=∠5.∵∠BOD=∠A'OC,∴∠4+∠5=∠1+∠3, 即∠1=∠4, ∴A'C∥BD.
②、如图3,由①知CD=AB=2,∠1=∠2,∠A=∠3.当四边形A'DBC矩形时,有∠DBC=90°,OA'=OD=OB=OC=1.
当∠A'OD=60°,则∠DOB=120°,∴∠1=30°.∴∠2=30°,∠A=∠3=60°.∴∠ADB=90°.
∴在Rt△ADB中,AD=AB=1.
当∠DOB=60°(如图4),则△ODB为正三角形,∴∠2=∠1=60°,∠A=∠3=30°BD=OD=1.∴∠ADB=90°
∴在Rt△ADB中,tan∠2=,∴AD=BDtan∠2=1tan60°=.
综上可得,AD的长为1或.
科目:初中数学 来源: 题型:
【题目】某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金.该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22,15,18(单位:万元).若想让一半左右的营业员都能达到月销售目标,则月销售额定为_____万元较为合适.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 8 |
第3组 | 35≤x<40 | 16 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,AD⊥BC于点D,点E为AC中点且BE平分∠ABD,连接BE交AD于点F,且BF=AC,过点D作DG∥AB,交AC于点G.
求证:
(1)∠BAD=2∠DAC
(2)EF=EG.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com