精英家教网 > 初中数学 > 题目详情

【题目】如图1,在ABEF中,AB=2,AF<AB,现将线段EF在直线EF上移动,在移动过程中,设线段EF的对应线段为CD,连接AD、BC.

(1)在上述移动过程中,对于四边形的说法不正确的是 B

A.面积保持不变 B.只有一个时刻为菱形

C.只有一个时刻为矩形 D.周长改变

(2)在上述移动过程中,如图2,若将ABD沿着BD折叠得到ABD(点A与点C不重合),AB交CD于点O.

试问AC与BD平行吗?请说明理由;

若以A、D、B、C为顶点的四边形是矩形,且对角线的夹角为60°,求AD的长.

【答案】(1)、B;(2)、、理由见解析;1或

【解析】

试题分析:(1)、根据平移的性质进行判断即可;(2)、根据对折的性质得出对应边和角相等,再根据平行线的判定解答即可; 根据矩形的性质和等边三角形的性质进行分析解答.

试题解析:(1)、因为平移,AB保持不变,且AB与CD间的距离不变,所以四边形ABCD的面积不变,故A正确;当ADCD时,四边形ABCD可以是矩形,故C正确;因为AD的长度有变化,所以四边形ABCD的周长改变,故D正确;

(2)、、A'CBD.理由如下:

如图2,由ABEF可得,AB=CD,ABCD,又根据对折可知AB=A'B,3=2,A'B=CD,1=3,

OD=OB.OA'=OC, ∴∠4=5.∵∠BOD=A'OC,∴∠4+5=1+3, 1=4, A'CBD.

、如图3,由知CD=AB=2,1=2,A=3.当四边形A'DBC矩形时,有DBC=90°,OA'=OD=OB=OC=1.

A'OD=60°,则DOB=120°∴∠1=30°∴∠2=30°A=3=60°∴∠ADB=90°

在RtADB中,AD=AB=1.

DOB=60°(如图4),则ODB为正三角形,∴∠2=1=60°A=3=30°BD=OD=1.∴∠ADB=90°

在RtADB中,tan2=AD=BDtan2=1tan60°=

综上可得,AD的长为1或

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金.该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为221518(单位:万元).若想让一半左右的营业员都能达到月销售目标,则月销售额定为_____万元较为合适.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】过直线上或直线外一点,与已知直线垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的一个内角是80°,则它的底角是 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算结果正确的是(  )

A. ﹣4b+b=﹣3b B. 2x2+2x3=4x5 C. 5x﹣x=5 D. a2b﹣ab2=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

组别

成绩x分

频数(人数)

第1组

25≤x<30

4

第2组

30≤x<35

8

第3组

35≤x<40

16

第4组

40≤x<45

a

第5组

45≤x<50

10

请结合图表完成下列各题:

(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,不是中心对称图形的是(  )

A.平行四边形B.C.等边三角形D.正六边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=BC,ADBC于点D,点E为AC中点且BE平分∠ABD,连接BE交AD于点F,且BF=AC,过点D作DGAB,交AC于点G.

求证:

(1)∠BAD=2∠DAC

(2)EF=EG.

查看答案和解析>>

同步练习册答案