【题目】如图,在平面直角坐标系中,已知A(﹣1,0)、C(4,0),BC⊥x轴于点C,且AC=BC,抛物线y=x2+bx+c经过A、B两点.
(1)求抛物线的表达式;
(2)点E是线段AB上一动点(不与A、B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.
【答案】(1)y=x2﹣2x﹣3;(2)点E的坐标为(,);(3)存在,P1(,),P2(,),P3(,).
【解析】
(1)先求得点A的坐标,然后将点A和点B的坐标代入抛物线的解析式可得到关于b、c的方程组,从而可求得b、c的值;
(2)设点E的坐标为(x,x+1),则点F的坐标为F(x,x2﹣2x﹣3),则可得到EF与x的函数关系式,利用配方法可求得EF的最大值以及点E的坐标;
(3)存在,分两种情况考虑:(i)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),由E的纵坐标与P纵坐标相等列出关于m的方程,求出方程的解得到m的值,确定出P1,P2的坐标;(ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3),根据F的纵坐标与P的纵坐标相等列出关于n的方程,求出方程的解得到n的值,求出P3的坐标,综上得到所有满足题意P得坐标.
(1)∵A(﹣1,0)、C(4,0),
∴OA=1,OC=4,
∴AC=5,
∵BC⊥x轴于点C,且AC=BC,
∴B(4,5),
将点A和点B的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.
∴抛物线的解析式为y=x2﹣2x﹣3.
(2)∵直线AB经过点A(﹣1,0),B(4,5),
设直线AB的解析式为y=kx+b,
∴,解得:,
∴直线AB的解析式为:y=x+1,
∵二次函数y=x2﹣2x﹣3,
∴设点E(t,t+1),则F(t,t2﹣2t﹣3),
∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣),
∴当t=时,EF的最大值为,
∴点E的坐标为().
(3)存在,分两种情况考虑:
(ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),
∴,
∴m1=,m2=
∴P1(,),P2(,)
(ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3)
则有:n2﹣2n﹣3=﹣
∴n1=, n2=(舍去)
∴P3(,),
综上所述,使△EFP是以EF为直角边的直角三角形所有点P的坐标为:P1(,),P2(,),P3(,).
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校草根文学社为了了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
数据收集,从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:分)
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
整理下分段整理样本数据并补全表格.
课外阅读时间x(分) | 0≤x<40 | 40≤x<80 | 80≤x<120 | 120≤x<160 |
等级 | D | C | B | A |
人数 | 3 |
| 8 |
|
分析数据:补全下列表格中的统计量.
平均数 | 中位数 | 众数 |
80 |
|
|
得出结论:
(1)用样本中的统计量估计我校学生每周用于课外阅读时间的情况等级为 ;
(2)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的平均数估计我校学生每人一年(按52周计算)平均阅读多少本课外书?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图AB是⊙O的直径,点D为⊙O上任意一点连接AD,DB.
(1)在AD的上方作∠DAC=∠DAB,交劣弧AO于点C.(尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下,若∠DAB=30°,连接CD,OD.求证:四边形AODC为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.
(1)求证:AC是∠DAB的平分线;
(2)若AB=10,AC=4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,为边的中点,为边上一动点(不与重合),将沿直线折叠,使点落在点处,连接,,当为等腰三角形时,的长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为.
(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;
(2)已知二次函数.
①当点B(m,)在这个函数的相关函数的图象上时,求m的值;
②当﹣3≤x≤3时,求函数的相关函数的最大值和最小值;
(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1}),连结MN.直接写出线段MN与二次函数的相关函数的图象有两个公共点时n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,在反比例函数的图象上运动,且始终保持线段的长度不变.为线段的中点,连接.则线段长度的最小值是_____(用含的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com