精英家教网 > 初中数学 > 题目详情

【题目】如图所示,抛物线y=ax2+bx(a<0)的图象与x轴交于A、O两点,顶点为B,将该抛物线的图象绕原点O旋转180°后,与x轴交于点C,顶点为D,若此时四边形ABCD恰好为矩形,则b的值为

【答案】﹣2
【解析】解:如图,连接AB、OB.过点B作BE⊥x轴于点E. 要使平行四边形ABCD是矩形,必须满足AC=BD,
∴OA=OB.
∵点B是抛物线的顶点,
∴AB=OB,
∴△ABO是等边三角形,
∠BAE=60°,AE= OA.
∵y=ax2+bx=ax(x+ )=0,y=ax2+bx=a(x+ 2
∴A(﹣ ,0),B(﹣ ,﹣ ),
∴tan60°= = =
解得 b=﹣2
故答案是:﹣2

【考点精析】认真审题,首先需要了解二次函数图象的平移(平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:|﹣1|= , 22= , (﹣3)2= =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是(
A.c>0
B.2a+b=0
C.b2﹣4ac>0
D.a﹣b+c>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣ +bx+c的图象经过A(2,0)、B(0,﹣6)两点.

(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.

(1)AB=2,BF=3,求AD的长度;

(2)GAC中点,连接GF,求证:∠AFG+∠BEF=GFE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2
(1)求y与x之间的函数关系式;
(2)若图案中三条彩条所占面积是图案面积的 ,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.

(1)求抛物线L的解析式;
(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,且.

(1)的值;

(2)①在轴的正半轴上存在一点,使,求点的坐标;

②在坐标轴上一共存在多少个点,使成立?请直接写出符合条件的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两条平行直线上各有个点,用这个点按如下规则连接线段:

①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;

②符合①要求的线段必须全部画出.

展示了当时的情况,此时图中三角形的个数为;图展示了当时的一种情况,此时图中三角形的个数为.试回答下列问题:

时,请在图中画出使三角形个数最少的图形,此时图中三角形的个数是________

试猜想当有对点时,按上述规则画出的图形中,最少有________个三角形;

时,按上述规则画出的图形中,最少有________个三角形.

查看答案和解析>>

同步练习册答案