【题目】综合与实践:
阅读理解:数学兴趣小组在探究如何求的值,经过思考、讨论、交流,得到以下思路:
如图1,作,使,,延长至点,使,连接.
设,则,..
请解决下列问题:
(1)类比求解:求出的值;
(2)问题解决:如图2,某住宅楼的后面有一建筑物,当光线与地面的夹角是时,住宅在建筑物的墙上留下高的影子;而当光线与地面的夹角是时,住宅楼顶在地面上的影子与墙角有的距离(,,在一条直线上).求住宅楼的高度(结果保留根号);
(3)探究发现:如图3,小明用硬纸片做了两个直角三角形,在中,,,;在中,,,.他将的斜边与的斜边重合在一起,并将沿方向移动.在移动过程中,,两点始终在边上(移动开始时点与点重合).探究在移动过程中,是否存在某个位置,使得?如果存在,直接写出的长度;如果不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】某果园的工人需要摘苹果园和梨园的果实,苹果园的果实是梨园的倍,如果前三天工人都在苹果园摘果实,第四天,的工人到梨园摘果实,剩下的工人仍在苹果园摘果实,则第四天结束后苹果园的果实全部摘完,梨园剩下的果实正好是名工人天的工作量.如果前三天工人都在苹果园摘果实,要使苹果和梨同时摘完,则第四天开始,再外请一个工人的情况下,应该安排___人摘苹果.(假定工人们每人每天摘果实的数量是相等的,且每人每天的工作时间相等)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△OEF在坐标系中,有E(0,2),F(﹣2,0),将直角△OEF绕点E逆时针旋转90°得到△ADE,且A在第一象限内,抛物线y=ax2+bx+c经过点A,E.且2a+3b+5=0.
(1)求抛物线的解析式.
(2)过ED的中点O'作O'B⊥OE于B,O'C⊥OD于C,求证:OBO'C为正方形.
(3)如果点P由E开始沿EA边以每秒2厘米的速度向点A移动,同时点Q由点A沿AD边以每秒1厘米的速度向点D移动,当点P移动到点A时,P,Q两点同时停止,且过P作GP⊥AE,交DE于点G,设移动的开始后为t秒.
①若S=PQ2(厘米),试写出S与t之间的函数关系式,并写出t的取值范围?
②当S取最小时,在抛物线上是否存在点R,使得以P,A,Q,R为顶点的四边形是平行四边形?如果存在,求出R的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD是等腰三角形ABC底边上的高,分别过点A、点B作两腰的垂线段,垂足分别为B1,A1,再过A1,B1分别作两腰的垂线段所得的垂足为B2,A2,用同样的作法依次得到垂足B3,A3,….若AB为3米,sinα=,则水平钢条A2B2的长度为( )
A. 米B. 2米C. 米D. 米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅(购买的数量不超过8吨),包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(单位:吨)之间的函数关系如图所示.
(1)求y与x的函数表达式?
(2)当销售数量为多少时,该公司经营这批杨梅所获得的毛利润(w)最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)
(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y(单位:万元)与加工数量x(单位:吨)之间的函数关系是
①当该公司销售杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?
②该公司销售杨梅吨数在 范围时,采用深加工方式比直接包装销售获得毛利润大些?(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文教用品商店欲购进两种笔记本,用 元购进的种笔记本与用元购进的种笔记本的数量相同,每本种笔记本的进价比每本种笔记本的进价贵元,
(1)求两种笔记本每本的进价分别为多少元?
(2)若该商店种笔记本每本售价元,种笔记本每本售价元,准备购进两种笔记本共本,且这两种笔记本全部售出后总获利不少于元,则最多购进种笔记本多少本?.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】西安市某中学数学兴趣小组在开展“保护环境,爱护树木”的活动中,利用课外时间测量一棵古树的高,由于树的周围有水池,同学们在低于树基3.3米的一平坝内(如图).测得树顶A的仰角∠ACB=60°,沿直线BC后退6米到点D,又测得树顶A的仰角∠ADB=45°.若测角仪DE高1.3米,求这棵树的高AM.(结果保留两位小数,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块长方形的土地,宽为120m,建筑商把它分成甲、乙、丙三部分,甲和乙均为正方形,现计划甲建住宅区,乙建商场,丙地开辟成面积为3200m2的公园.若设这块长方形的土地长为xm.那么根据题意列出的方程是_____.(将答案写成ax2+bx+c=0(a≠0)的形式)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com