精英家教网 > 初中数学 > 题目详情

如图,二次函数数学公式(a>0)的图象与y轴交于点A,与x轴交于点B、C,过A点作x轴的平行线交抛物线于另一点D,线段OC上有一动点P,连接DP,作PE⊥DP,交y轴于点E.问题:
(1)当a变化时,线段AD的长是否变化?若变化,请说明理由;若不变,请求出AD的长;
(2)若a为定值,设OP=x,OE=y,试求y关于x的函数关系式;
(3)若在线段OC上存在不同的两点P1、P2使相应的点E1、E2都与点A重合,试求a的取值范围.

解:(1)DA的长度不变;
由抛物线的解析式知,其对称轴为:x=
易知A(0,a),则D(9,a),
故AD=9.

(2)易求得B(-3,0),C(12,0);
①当0<x<9时,过D作DF⊥OC于F,
则FC=OC-AD=3,PF=9-x;
由△POE∽△DFP,


即y=-x2+x;
②当9<x<12时,点E在x轴的下方,过D作DF⊥OC于F;
由△POE∽△DFP,

=
即y=-x2-x;

(3)当y=a时,a=-x2+x,化为x2-9x+a2=0;
由题意得:△>0,
即92-4a2>0,
又因为a>0,
所以0<a<
分析:(1)根据抛物线的解析式,可得到点A的坐标和抛物线的对称轴方程,进而可表示出点D的坐标,根据A、D的坐标,即可判断出AD的长是否为定值.
(2)过D作DF⊥x轴于F,可用x表示出PF的长,而DF=a,利用△PEO∽△DPF得到的比例线段即可求得y、x的函数关系式,要注意的是在用x表示PF长的时候,要分两种情况讨论:①点E在x轴上方时,②点E在x轴下方时.
(3)若E、A重合,那么OE=y=a,将其代入(2)题得到的y、x的函数关系式中,可得到关于x的方程,由于不同的两点P1、P2使相应的点E1、E2都与点A重合,那么方程的判别式△>0,由此求得a的取值范围.
点评:此题考查了二次函数的对称性、相似三角形的判定和性质、根的判别式等知识;(2)题考虑问题要全面,不要遗漏点E在x轴下方的情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案