精英家教网 > 初中数学 > 题目详情

【题目】如图在四边形ABCDAC平分∠BADCEABEAEAD+AB.请你猜想∠1和∠2有什么数量关系?并证明你的猜想

猜想   

证明

【答案】∠1+∠2=180°

【解析】

延长ADCCF垂直ADF,由条件可证AFC≌△AEC,得到CF=CE.再由条件可证BE=DF,所以CDF≌△CEB,由全等的性质可得∠ABC=CDF,问题可得解.

猜想:∠1+2=180°

证明:过C点作CFAD延长线于点F,

CEAB,AC平分∠DAB,

CB=CF,

CEB=CFD=90°,

RtCEARtCFA

RtCEARtCFA(HL),

AE=AF,

AE+AF=AF-FD+AE+BE,

FD=BE,

CEBCFD

∴△CEB≌△CFD(SAS),

∴∠2=CDF,

∵∠CDF+1=180°,

∴∠1+2=180°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.
(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?
(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料,并解答问题.

材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.

解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)

∵对应任意x,上述等式均成立,∴,∴a=2,b=1

==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.

解答:

(1)将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.

(2)试说明的最小值为8.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y= x﹣b与y= x﹣1的图象之间的距离等于3,则b的值为(
A.﹣2或4
B.2或﹣4
C.4或﹣6
D.﹣4或6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的两边长分别为57,则第三边的中线长x的取值范围是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A、B的坐标分别为A(6,0)、B(0,2),以AB为斜边在右上方作Rt△ABC.设点C坐标为(x,y),则(x+y)的最大值=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在△ABC中,AB=AC,∠BAC=40°,分别以AB,AC为边作两个等腰三角形ABD和ACE,且AB=AD,AC=AE,∠BAD=∠CAE=90°.

(1)求∠DBC的度数.

(2)求证:BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中(如图每格一个单位),描出下列各点A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次将各点连接起来,观察所描出的图形,它像什么?根据图形回答下列问题:

(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?

(2)线段FD和x轴有什么位置关系?点F和点D的坐标有什么特点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,∠ACB=90°,点D是斜边AB的中点,DEBC,且CE=CD

(1)求证:∠B=DEC

(2)求证:四边形ADCE是菱形.

查看答案和解析>>

同步练习册答案