精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D、E.
(1)求AC、BC的长;
(2)若AC=3,连接BD,求图中阴影部分的面积(π取3.14).
(1)连接OD、OE,
∵⊙O切BC于E,切AC于D,∠C=90°,
∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,
∵OE=OD=2,
∴四边形CDOE是正方形,
∴CE=CD=OD=OE=2,∠DOE=90°,
∵∠OEB=∠C=90°,
设AD=x,
∵AC+BC=9,
∴BE=9-2-2-x=5-x,
∴OEAC,
∴∠EOB=∠A,
∴△OEB△ADO,
BE
OD
=
OE
AD

5-x
2
=
2
x

x=1或4,
∴AC=3,BC=6或AC=6,BC=3;


(2)∵AC=3,AD=3-2=1,BC=6,
∴阴影部分的面积S=S△ACB-S△ADB-(S正方形CDOE-S扇形ODE
=
1
2
×3×6-
1
2
×1×6-(2×2-
90π×22
360

=9-3-(4-π)
=2+π
≈5.14.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形,点F在CD上,点O是BF的中点,以BF为直径的半圆与AD相切于点E.
(1)求证:点E是AD的中点;
(2)设BF=5,求正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点C在⊙O上,CE⊥AB于E,CD平分∠ECB,交过点B的射线于D,交AB于F,且BC=BD.
(1)求证:BD是⊙O的切线;
(2)若AE=9,CE=12,求BF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知l是⊙O的切线,⊙O的直径AB=10cm,那么点A、B到直线l的距离之和为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知BC是⊙O的直径,P是⊙O上一点,A是
BP
的中点,AD⊥BC于点D,BP与AD相交于点E.
(1)当BC=6且∠ABC=60°时,求
AB
的长;
(2)求证:AE=BE.
(3)过A点作AMBP,求证:AM是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,过⊙O外一点M作⊙O的两条切线,切点为A、B,连接AB、OA、OB、C、D在⊙O上居于弦AB两端,过点D作⊙O的切线交MA、MB于E、F,连接OE、OF、CA、CB,则图中与∠ACB相等的角(不包含∠ACB)有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,巳知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=
3
,则线段BC的长度等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC切于点D,直线ED交BC的延长线于F.
(1)求证:BC=FC;
(2)若AD:AE=2:1,求cot∠F的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.

查看答案和解析>>

同步练习册答案