精英家教网 > 初中数学 > 题目详情
某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案.
分析:用二元一次方程组解决问题的关键是找到2个合适的等量关系.在本题中可利用“两种型号电视机总数为50”和“计划拨款9万元用于购电视”这两个等量关系列方程组解答.
解答:解:分情况计算,由其解的情况即可求得进货方案.
设甲、乙、丙型号的电视机分别为x台,y台,z台.
(1)若选甲、乙,则有:
x+y=50
1 500x+2 100y=90 000
解得
x=25
y=25

(2)若选甲、丙,则有:
x+z=50
1500x+2500z=90000
,解得
x=35
z=15

(3)若选乙、丙,则有:
y+z=50
2 100y+2 500z=90 000
解得
y=87.5
z=-37.5
.(舍去)
答:有两种进货方案:(1)购进甲种25台,乙种25台.(2)购进甲种35台,丙种15台.
点评:解题关键是弄清题意,找到合适的等量关系,列出方程组.本题三种不同型号的电视机,同时购进其中两种不同型号电视机有三种进货方案.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;
(3)若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场计划拨款9万元从厂家购买50台电视机,已知该厂家生产三种不同型号的电视机的出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,商场销售一台甲种电视机可获利150元,销售乙种电视机每台可获利200元,销售丙种电视机每台可获利250元.
(1)若同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)经市场调查这三种型号的电视机是最受欢迎的,且销售量乙种是丙种的3倍.商场要求成本不能超过计划拨款数额,利润不能少于8500元的前提,购进这三种型号的电视机共50台,请你设计这三种不同型号的电视机各进多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场计划拨款9万元从厂家购进50台电视机,已知该厂有三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进两种不同型号的电视机50台,正好花去9万元,请你研究一下商场的进货方案;
(2)某商场销售一台甲、乙、丙电视机,分别可获利150元,200元,250元,为使获利最多,应选择上述哪种进货方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场计划拨款9万元购进50台电视机.已知厂家生产三种不同型号的电视机,出厂价分别为:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,问有多少种不同的进货方案?并写出这些方案.
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在第(1)小题的几个方案中,为使销售时获得利润最多,你选择哪种方案?并说明理由.

查看答案和解析>>

同步练习册答案