精英家教网 > 初中数学 > 题目详情

【题目】对于反比例函数y(k≠0),下列说法不正确的是(  )

A. 它的图象分布在第一、三象限 B. (kk)在它的图象上

C. 它的图象关于原点对称 D. 在每个象限内yx的增大而增大

【答案】D

【解析】

根据反比例函数的性质对四个选项进行逐一分析即可.

解:A、反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,故本选项错误;
B、把点(k,k),代入反比例函数y=(k≠0)中成立,故本选项错误;
C、反比例函数y=(k≠0),k2>0根据反比例函数的性质它的图象分布在第一、三象限,是关于原点对称,故本选项错误;
D、反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,yx的增大而减小,故本选项正确.
故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形OABC中,,点的坐标分别为,点DAB上一点,且,双曲线经过点D,交BC于点E

求双曲线的解析式;

求四边形ODBE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD绕点D旋转,点C落在BC上的点H处,点B恰好落在点A处,得平行四边形DHAE,若BH=2,CH=3,则DC=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一幢楼房AB背后有台阶CD,台阶每层高0.2,AC=17.2,设太阳光线与水平地面的夹角为α,α=60°,测得楼房在地面上的影长AE=10,现有一只小猫睡在台阶MN上晒太阳.

(1)求楼房的高度约为多少米?(结果精确到0.1)

(2)过了一会儿,α=45°,小猫还能不能晒到太阳?请说明理由.(参考数据:≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于⊙OECB的延长线上,连结ACAEACB=BAE=45°

1)求证:AE是⊙O的切线;

2)若AB=ADAC=tanADC=3BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (x>0)的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;

(2)当k为何值时,△EFA的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,∠BADABC的一个外角,∠BAC、BAD的平分线分别交⊙O于点E、F.请你在图上连接EF.(1)证明:EF是⊙O的直径;(2)请你判断EFBC有怎样的位置关系?并请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).

1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;

2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;

3)施工队计划在隧道门口搭建一个矩形脚手架”CDAB,使AD点在抛物线上。BC点在地面OM线上(如图2所示).为了筹备材料,需测算脚手架三根钢杆ABADDC的长度之和的最大值是多少,请你帮施工队计算一下.

查看答案和解析>>

同步练习册答案