精英家教网 > 初中数学 > 题目详情
(2011•鞍山)已知如图,D是△ABC中AB边上的中点,△ACE和△BCF分别是以AC、BC为斜边的等腰直角三角形,连接DE、DF.
求证:DE=DF.
分析:分别取AC、BC中点M、N,连接MD、ND,再连接EM、FN,利用在直角三角形中:直角三角形斜边上的中线等于斜边的一半和已知条件证明四边形MDNC为平行四边形,再利用平行四边形的性质和已知条件证明△EMD≌△DNF即可.
解答:证明:分别取AC、BC中点M、N,连接MD、ND,再连接EM、FN,
∵D为AB中点,∠AEC=90°,∠BFC=90°,
∴EM=DN=
1
2
AC,FN=MD=
1
2
BC,
DN∥CM且DN=CM,
∴四边形MDNC为平行四边形,
∴∠CMD=∠CND.
∵∠EMC=∠FNC=90°,
∴∠EMC+∠CMD=∠FNC+∠CND,
即∠EMD=∠FND,
∴△EMD≌△DNF(SAS).
∴DE=DF.
点评:本题考查了平行四边形的判定和性质、全等三角形的判定和性质以及直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,题目难度中等综合性不小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•鞍山)某段限速公路m上规定小汽车的行驶速度不得超过70千米/时,如图所示,已知测速站C到公路m的距离CD为30
3
米,一辆在该公路上由北向南匀速行驶的小汽车,在A处测得测速站在汽车的南偏东30°方向,在B处测得测速站在汽车的南偏东60°方向,此车从A行驶到B所用的时间为3秒.
(1)求从A到B行驶的路程;
(2)通过计算判断此车是否超速?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山一模)如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以2cm/s的速度、沿B→A→D→C方向,向点C运动;动点Q从点C出发,以2cm/s的速度、沿C→D→A方向,向点A运动.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.
问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷(瓜沥一中 赵桂清)(解析版) 题型:解答题

(2011•鞍山一模)在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.

(1)我们先从特殊的倍角三角形入手研究.请你结合图形填空:
三三角形角形角的已知量  
图2∠A=2∠B=90°   
图3∠A=2∠B=60°   
(2)如图4,对于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的对边分别记为a,b,c,a,b,c,三边有什么关系呢?请你作出猜测,并结合图4给出的辅助线提示加以证明;
(3)请你运用(2)中的结论解决下列问题:若一个倍角三角形的两边长为5,6,求第三边长. (直接写出结论即可)

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷(瓜沥二中 施栋梁 任亚文)(解析版) 题型:填空题

(2011•鞍山一模)已知关于x的方程x2-2k=3的一个解是k,则k的值是   

查看答案和解析>>

同步练习册答案