【题目】工厂准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.
求一只A型节能灯和一只B型节能灯的售价各是多少元?
工厂准备购进这两种型号的节能灯共50只,且A型节能灯的数量不多于B型节能灯数量的4倍,当购进A型节能灯m只时,工厂的总费用为w元.
写出
元
与
只
之间的函数关系式,并写出自变量取值范围;
如何购买A、B型节能灯,可以使总费用最少,且总费用最少是多少?
【答案】(1)一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)当购买A型灯37只,B型灯13只时,最省钱,总费用最少是270元.
【解析】
(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的4倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.
设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,
根据题意,得:,
解得:,
答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;
(2)①总费用为:,
②,
解得:,
而m为正整数,
当
时,总费用最少,总费用
元
此时,
答:当购买A型灯37只,B型灯13只时,最省钱,总费用最少是270元.
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD中,,
绕点A顺时针旋转,它的两边分别交CB、
或它们的延长线
于点M、N,当
绕点A旋转到
时
如图
,则
线段BM、DN和MN之间的数量关系是______;
当
绕点A旋转到
时
如图
,线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;
当
绕点A旋转到
如图
的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两人在道路的两边相向而行,当甲、乙两人分别行至点A、C时,测得乙在甲的北偏东60°方向上.乙留在原地休息,甲继续向前走了40米到B处,此时测得乙在其北偏东30°方向上.求道路的宽(参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度数
(2)写出∠DAE与∠C-∠B的数量关系,并证明你的结论
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE于F,交AC于G,交AD于H.下列说法: ;②点F是GB的中点;
;
,其中正确的结论的序号是_____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E |
出行方式 | 共享单车 | 步行 | 公交车 | 的士 | 私家车 |
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响,但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入,因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这种情况下,如果要保证每周万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中BC边上的垂直平分线DE与∠BAC得平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC交于点G.
求证:(1)BF=CG;(2)AF=(AB+AC).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com