精英家教网 > 初中数学 > 题目详情
(1)如图1,点O是△ABC内任意一点,G、D、E分别为AC、OA、OB的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?若可以,指出F点位置,并给予证明;
(2)(填空,使下列命题成立,不要求证明)如图3,点E、F、G、H分别为AB、BC、CD、DA的中点.
 
时,四边形EFGH为矩形;
 
时,四边形EFGH为菱形;
 
时,四边形EFGH为正方形.
精英家教网
分析:当F为BC中点时,四边形GDEF为平行四边形,因为连接OC后将把四边形AOBC分成两个三角形,然后根据三角形中位线平行且等于第三边的一半,来证明GD、FE即平行且相等,从而得出为平行四边形.
解答:解:(1)答:当F为BC中点时,四边形GDEF为平行四边形(2分)
证明:∵G、F分别是AC、BC中点
∴GF∥AB,且GF=
1
2
AB(2分)
同理可得,DE∥AB,且DE=
1
2
AB(2分)
∴GF∥DE,且GF=DE
∴四边形GDEF是平行四边形(2分)

(2)DB⊥AC(1分);DB=AC(1分);DB⊥AC,且DB=AC(2分).
点评:此题主要考查了平行四边形的判定及性质,以及矩形、菱形、正方形的判定,比较全面,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中,y=x2+ax+2a与x轴交于A,B两点,点E(2,0)绕点O顺时针旋转90°后的对应点C在此抛物线上,点P(4,2).
(1)求抛物线解析式;
(2)如图1,点F是线段AC上一动点,作矩形FC1B1A1,使C1在CB上,B1,A1在AB上,设线段A1F的长为a,求矩形FC1B1A1的面积S与a的函数关系式,并求S的最大值;
(3)如图2,在(1)的抛物线上是否存在两个点M,N,使以O,M,N,P为顶点的四边形是平行四边形?若存在,求出点M,N的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点B是线段AD上一点,△ABC和△BDE分别是等边三角形,连接AE和CD.
(1)求证:AE=CD;
(2)如图2,点P、Q分别是AE、CD的中点,试判断△PBQ的形状,并证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为
60
60
度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.
(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,若点P是反比例函数y=
5
2x
图象上的任意一点,且PD⊥x轴于点D,则△POD的面积是
5
4
5
4

查看答案和解析>>

同步练习册答案