精英家教网 > 初中数学 > 题目详情

如图①所示,已知△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为点D、E.
(1)求证:DE=DB+EC
(2)如图②,将MN绕点A旋转,使MN和BC交于G点,其他条件不变,结论(1)还成立吗?若成立请给出证明;若不成立,请探究CE、DB、DE的关系,并证明你的结论.
作业宝

(1)证明:∵由题意可知,BD⊥MN与D,EC⊥MN与E,∠BAC=90°,
∴∠BDA=∠CEA=∠BAC=90°,
∴∠DAB+∠EAC=90°,∠ECA+∠EAC=90°,
∴∠DAB=∠ECA,
在△ABD与△CEA中,

∴△ABD≌△CEA,
∴BD=AE,DA=CE,
∵DE=DA+AE,
∴DE=DB+EC.

(2)(1)的结论不成立,CE、DB、DE的关系是:BD=CE+DE,
证明:证明:∵∠BAC=90°,
∴∠BAD+∠CAD=90°,
又∵BD⊥MN,CE⊥MN,
∴∠CAD+∠ACE=90°,∠BDA=∠AEC=90°,
∴∠BAD=∠ACE,
在△ABD和△CAE中

∴△ABD≌△CAE(AAS);
∴BD=AE,CE=AD,
∵AE=AD+DE,
∴BD=CE+DE.
分析:(1)求出△ABD≌△CEA,根据全等三角形性质得出BD=AE,DA=CE,即可得出答案.
(2)求出△ABD≌△CAE,推出BD=AE,CE=AD,即可求出答案.
点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等,证明过程类似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图9所示,已知:∠α、线段a,求作等腰三角形△ABC,使腰长AB=a,底角∠A=∠α.(要求写出作法,并保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=-x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=-
1
2
时,y取最大值
25
4

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=
1
2
x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•义乌市)如图1所示,已知y=
6
x
(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.
(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2
3
,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2精英家教网所示.已知展开图中每个正方形的边长为1.
(1)求在该展开图中可画出最长线段的长度这样的线段可画几条?
(2)试比较立体图中∠BAC与平面展开图中∠B′A′C′的大小关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)试说明:△ABC≌△FED;
(2)若图形经过平移和旋转后得到图2,且有∠EDB=25°,∠A=66°,试求∠AMD的度数;
(3)将图形继续旋转后得到图3,此时D,B,F三点在同一条直线上,若DB=2DF,连接EB,已知△EFB的面积为5cm2,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请你说明理由.

查看答案和解析>>

同步练习册答案