【题目】在半径为25cm的⊙O中,弦AB=40cm,则弦AB所对的弧的中点到AB的距离是( )
A.10cmB.15cmC.40cmD.10cm或40cm
【答案】D
【解析】
点C和D为弦AB所对弧的中点,连结CD交AB于E,连结OA,如图,根据垂径定理的推论得到CD为直径,CD⊥AB,则AE=BE=AB=20,再利用勾股定理计算出OE=15,然后分别计算出DE和CE即可.
解:点C和D为弦AB所对弧的中点,连结CD交AB于E,连结OA,如图,
∵点C和D为弦AB所对弧的中点,
∴CD为直径,CD⊥AB,
∴AE=BE=AB=20,
在Rt△OAE中,∵OA=25,AE=20,
∴OE=,
∴DE=OD+OE=40,CE=OC﹣OE=10,
即弦AB和弦AB所对的劣弧的中点的距离为10cm,弦AB和弦AB所对的优弧的中点的距离为40cm.
故选:D.
科目:初中数学 来源: 题型:
【题目】已如抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,﹣)和(m﹣b,m2﹣mb+n),其中a,b,c,m,n为实数,且a,m不为0.
(1)求c的值;
(2)求证:抛物线y=ax2+bx+c与x轴有两个交点;
(3)当﹣1≤x≤1时,设抛物线y=ax2+bx+c与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?
(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)求线段CD的长;
(2)求线段DB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2; ⑤3a+c<0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一张正三角形的纸片的边长为2cm,D、E、F分别是边AB、BC、CA(含端点)上的点,设BD=CE=AF=x(cm),△DEF的面积为y(cm2).
(1)求y关于x的函数表达式和自变量的取值范围;
(2)求△DEF的面积y的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点A在以BC为直径的半圆内.仅用 (不能使用圆规)分别按下列要求画图(保留画图痕迹).
(1)请在图中画出BA边上的高CD;
(2)请在图中画出弦DE,使得DE∥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.
(1)求A社区居民人口至少有多少万人?
(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC=13cm,BC=10cm,M、N分别是AB、AC的中点,D、E在BC上,且DE=5cm,连结DN、ME交于H,则△HDE的面积为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com