精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、En,分别记△BCE1、△BCE2、△BCE3…△BCEn的面积为S1、S2、S3、…Sn.则Sn=
 
S△ABC(用含n的代数式表示).
分析:根据直角三角形的性质以及相似三角形的性质.再利用在△ACB中,D2为其重心可得D2E1=
1
3
BE1,然后从中找出规律即可解答.
解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;
根据直角三角形的性质以及相似三角形的性质可知:D1E1=
1
2
BC,CE1=
1
2
AC,S1=
1
2
BC•CE1=
1
2
BC×
1
2
AC=
1
2
×
1
2
AC•BC=
1
2
S△ABC
∴在△ACB中,D2为其重心,
∴D2E1=
1
3
BE1
∴D2E2=
1
3
BC,CE2=
1
3
AC,S2=
1
3
×
1
2
×AC•BC=
1
3
S△ABC,
∴D3E3=
1
4
BC,CE2=
1
4
AC,S3=
1
4
S△ABC…;
∴Sn=
1
n+1
S△ABC
故答案为:
1
n+1
点评:此题主要考查相似三角形的判定与性质和三角形的重心等知识点,解决本题的关键是据直角三角形的性质以及相似三角形的性质得到第一个三角形的面积与原三角形的面积的规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG.
(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形.那么,构成菱形的四个顶点是
B,E,D,F
E,D,C,G
;构成等腰梯形的四个顶点是
B,E,D,C
E,D,G,F

(2)请你各选择其中一个图形加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC是⊙O的内接三角形,∠BAC=90°,AH⊥BC,垂足为D,过点B作弦BF交AD于点精英家教网E,交⊙O于点F,且AE=BE.
(1)求证:
AB
=
AF

(2)若BE•EF=32,AD=6,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中,∠CAB=30°,BC=5.过点A做AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中∠A=90°,AB=3,AC=4.将其沿边AB向右平移2个单位得到△FGE,则四边形ACEG的面积为
14
14

查看答案和解析>>

同步练习册答案