精英家教网 > 初中数学 > 题目详情
如图所示,边长为2的等边三角形OBA的顶点A在x轴的正半轴上,B点位于第一象限.精英家教网将△OAB绕点O顺时针旋转30°后,得到△OB′A′,点A′恰好落在双曲线y=
k
x
(k≠0)上.
(1)在图中画出△OB′A′;
(2)求双曲线y=
k
x
(k≠0)的解析式;
(3)等边三角形OB′A′绕着点O继续按顺时针方向旋转
 
度后,A′点再次落在双曲线上?( 直接将答案填写在横线上即可,不需要说明理由 )
分析:(1)旋转中心为O点,旋转角为30°,旋转方向为顺时针,由此画出图形;
(2)根据三角形的轴对称性及所画图形,由勾股定理求OM,MA′,确定A′的坐标,可求双曲线解析式;
(3)双曲线y=-
3
x
关于直线y=-x轴对称,可求A′(
3
,-1)点关于直线y=-x的轴对称点,再判断这个点是否在双曲线上.
解答:精英家教网解:(1)画图如图所示;

(2)设A′B′与x轴交于点M,
由题意可知:OA=2,∠MOA′=30°
∴AM=1,
由勾股定理得:OM=
3

∴A′点的坐标为(
3
,-1),
∵A′恰好落在双曲线y=
k
x
(k≠0)上,
∴k=-
3

∴双曲线的解析式为:y=-
3
x


(3)30.
点评:本题考查了反比例函数的综合运用,旋转的性质.关键是通过坐标系里的图形旋转,特殊三角形的性质,求点的坐标,确定双曲线的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则tan∠AED的值等于(  )
A、
1
2
B、
1
3
C、
2
3
D、
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

23、高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,边长为1 的正方形网格中有格点△ABC(顶点是网格线的交点)和格点O,若把△ABC绕点O逆时针旋转90°.
(1)在网格中画出△ABC旋转后的图形;
(2)求点C在旋转过程中所经过的路径长度.

查看答案和解析>>

同步练习册答案